scalpy package¶
Submodules¶
scalpy.fluids module¶
-
class
scalpy.fluids.
GCG
(Om0, As, alpha, h=0.7, Ob0=0.045, Or0=5e-05, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.fluids.LCDM
A Class to calculate cosmological observables for a model with CDM and dark energy for which equation of state is parametrized as that by GCG $p= -A/rho^{alpha}$: w(z) = -As/(As+(1-As)*(1+z)**(3*(1+alpha))) where ‘z’ is the redshift and As,alpha are model parameters.
parameters are: Om0 : present day density parameter for total matter (baryonic + dark) As and alpha: parameters involved in eqn. of state for GCG (ref()) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 MPc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 MPc scale
-
hubble_normalized_z
(z)¶
-
-
class
scalpy.fluids.
LCDM
(Om0, h=0.7, Ob0=0.045, Or0=0, ns=0.96, sigma_8=0.8)¶ Bases:
object
A Class to calculate cosmological observables for concordance LCDM model. Equation of state, w = -1
parameters are: Om0 : present day density parameter for total matter (baryonic + dark) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 MPc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 MPc scale
-
A0bbks
()¶
-
A0wh
()¶
-
DPk_bbks
(k, z)¶ Dimensionless Matter Power Spectra Pk as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be BBKS Ref: Bardeen et. al., Astrophys. J., 304, 15 (1986)
-
DPk_wh
(k, z)¶ Dimensionless Matter Power Spectra Pk as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be Eisenstein & Hu Ref: Eisenstein and Hu, Astrophys. J., 496, 605 (1998)
-
D_H
()¶ Hubble distance in units of MPc (David Hogg arxiv: astro-ph/9905116v4)
-
D_p
(a)¶
-
D_plus_a
(a)¶
-
D_plus_z
(z)¶ Normalized solution for the growing mode as a function of redshift
-
Omega_m_a
(a)¶ Density parameter for matter Omega_m as a function of scale factor ‘a’
-
Omega_m_z
(z)¶ Density parameter for matter Omega_m as a function of redshift ‘z’
-
Pk_bbks
(k, z)¶ Matter Power Spectra Pk in units if h^{-3}Mpc^{3} as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be BBKS Ref: Bardeen et. al., Astrophys. J., 304, 15 (1986)
-
Pk_wh
(k, z)¶ Matter Power Spectra Pk in units if h^{-3}Mpc^{3} as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be Eisenstein & Hu Ref: Eisenstein and Hu, Astrophys. J., 496, 605 (1998)
-
Wf
(k)¶ Window function
-
acoustic_length
()¶ It calculates acoustis length scale at decoupling redshift
-
angular_diameter_distance_z
(z)¶ Angular diameter distance as function of redshift z in units of MPc
-
cmb_shift_parameter
()¶ CMB Shift parameter at decoupling redshift (see Shafer and Huterer, arxiv:1312.1688v2) Output:
R (shift parameter)
-
comoving_distance_z
(z1)¶ Line of sight comoving distance as a function of redshift z as described in David Hogg paper in units of MPc
-
deriv
(y, a)¶
-
fsigma8z
(z)¶ fsigma_{8} as a function of redshift
-
growth_rate_a
(a)¶
-
growth_rate_z
(z)¶ Growth Rate f = D log(Dplus)/ D Log(a) as a function of redshift
-
hubble_normalized_a
(a)¶ Calculates normalized Hubble parameter h(a) = H(a)/H0 where:
H(a) is the Hubble parameter at redshift z H0 is the current value of Hubble parameter- Input:
- a: scale factor of the Universe
- Output:
- h(a): normalized hubble parameter
-
hubble_normalized_z
(z)¶ Calculates normalized Hubble parameter h(z) = H(z)/H0 where:
H(z) is the Hubble parameter at redshift z H0 is the current value of Hubble parameter- Input:
- z: redshift
- Output:
- h(z): normalized hubble parameter
-
hubble_prime_normalized_a
(a)¶ Derivative of dimensionless hubble parameter w.r.t. a
-
integrand_bbks
(k)¶
-
integrand_wh
(k)¶
-
inverse_hubble_normalized_z
(z)¶ Inverse of the normalized hubble parameter: 1/h(z) where h(z) = H(z)/H0 Input:
z: redshift- Output:
- 1/h(z): inverse of normalized hubble parameter
-
lookback_time_z
(z)¶ Lookback time as a function of redshift z in units of billion years
-
luminosity_distance_z
(z)¶ Luminosity distance in as function of redshift z in units of MPc
-
sol1
()¶
-
sound_horizon
(z)¶ Gives the sound horizon at redshift z
-
t_H
()¶ Hubble time in units of Billion years
-
time_delay_distance
(zd, zs)¶ Time delay distance used in strong lensing cosmography (See Suyu et. al., Astrophys. J. 766, 70, 2013; arxiv:1208.6010) zs = redshift at which the source is placed zd = redshift at which the deflector (or lens) is present
-
z_decoupling
()¶ Gives the redshit of the decoupling era
-
z_drag_epoch
()¶ Gives the redshit of baryon drag epoch Eisenstein and Hu; arxiv:astro-ph/9709112
-
-
class
scalpy.fluids.
w0waCDM
(Om0, w0, wa, h=0.7, Ob0=0.045, Or0=5e-05, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.fluids.LCDM
A Class to calculate cosmological observables for a model with CDM and dark energy for which equation of state w is parametrized as: w(a) = w0 + wa*(1-a) where ‘a’ is the scale factor and w0,wa are constants in Taylor expansion of variable equation of state w(a)
parameters are: Om0 : present day density parameter for total matter (baryonic + dark) w0 and wa: coefficients of Taylor expansion of equation of state w(a) near a=1 Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 MPc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 MPc scale
-
hubble_normalized_z
(z)¶
-
-
class
scalpy.fluids.
w0waCDMzi
(Om0, w0, wa, zi, h=0.7, Ob0=0.045, Or0=5e-05, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.fluids.LCDM
A Class to calculate cosmological observables for a model with CDM and dark energy for which equation of state w is parametrized as: w(a) = w0 + wa*(1-a) where ‘a’ is the scale factor and w0,wa are constants in Taylor expansion of variable equation of state w(a)
parameters are: Om0 : present day density parameter for total matter (baryonic + dark) w0 and wa: coefficients of Taylor expansion of equation of state w(a) near a=1 Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 MPc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 MPc scale
-
hubble_normalized_z
(z)¶
-
-
class
scalpy.fluids.
wCDM
(Om0, w, h=0.7, Ob0=0.045, Or0=5e-05, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.fluids.LCDM
A Class to calculate cosmological observables for a model with CDM and dark energy for which equation of state w is constant but not equal to -1. See hubble_normalized_z function for details.
parameters are: Om0 : present day density parameter for total matter (baryonic + dark) Ob0 : present day density parameter for baryons (or visible matter) w : equation of state for “dark energy” ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 MPc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 MPc scale
-
hubble_normalized_z
(z)¶
-
scalpy.scalar module¶
-
class
scalpy.scalar.
galileonexp
(Ophi_i, epsilon_i, li, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.scalar.galileonpow
A Class to calculate cosmological observables for Galileon field with exponential potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for Galileon field epsilon_i : initial value (at a = 0.001) for epsilon (see readme.rst) li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
gal
(x, efold)¶
-
-
class
scalpy.scalar.
galileonpow
(Ophi_i, epsilon_i, li, n, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.scalar.scalarpow
A Class to calculate cosmological observables for Galileon field with exponential potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for Galileon field epsilon_i : initial value (at a = 0.001) for epsilon (see readme.rst) li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
Omega_m_n
(N)¶ Density parameter for matter component as a function of log(a) Input:
N: log(a)- Output:
- Omega_m_n(z): density parameter for matter component as a function of e-folding
Examples: 1) Calculating Omega_m with scalar field with power law potential V=phi^n: n=1 at log(a) = -2
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_m_n(-2)- Calculating present day density parameter Omega_m with scalar field for exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_m_n(0)
-
Omega_phi_n
(N)¶ Density parameter for scalar field as a function of log(a) where ‘a’ is the scale factor of the Universe. Input:
N: log(a)- Output:
- Omega_phi(N): density parameter for scalar field as a function of e-folding
Examples: 1) Calculating Omega_phi for scalar field with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_phi_n(-2)- Calculating present day density parameter scalar field with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_phi_n(0)
-
Omega_r_n
(N)¶ Density parameter for radiation as a function of log(a) Input:
N: log(a)- Output:
- Omega_r_n(z): density parameter for radiation component as a function of e-folding
Examples: 1) Calculating Omega_r for radiation component with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_r_n(-2)- Calculating present day density parameter of radiation component with scalar field
and exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_r_n(0)
-
comoving_distance_n
(N)¶ Line of sight comoving distance as a function of log(a) as described in David Hogg paper in units of Mpc
-
equation_of_state_n
(N)¶ Equation of state as a function of log(a)
-
gal
(x, efold)¶
-
hubble_normalized_n
(N)¶ Dimensionless Hubble constant as a function of N = log(a)
-
sol
()¶
-
-
class
scalpy.scalar.
scalarexp
(Ophi_i, li, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.scalar.scalarpow
A Class to calculate cosmological observables for quintessence field with exponential potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for scalar field li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
f
(x, efold)¶
-
-
class
scalpy.scalar.
scalarpow
(Ophi_i, li, n, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
object
A Class to calculate cosmological observables for quintessence field with power law potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for scalar field li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) n : order of power law potential V(phi)=phi**n Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
A0bbks
()¶
-
A0wh
()¶
-
DPk_bbks
(k, z)¶ Dimensionless Matter Power Spectra Pk as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be BBKS Ref: Bardeen et. al., Astrophys. J., 304, 15 (1986)
-
DPk_wh
(k, z)¶ Dimensionless Matter Power Spectra Pk as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be Eisenstein & Hu (ref(Eisenstein and Hu, Astrophys. J., 496, 605 (1998)))
-
D_H
()¶ Hubble distance in units of Mpc (David Hogg, arxiv: astro-ph/9905116v4)
-
D_p
(N)¶
-
D_plus_n
(N)¶ Normalized solution for the growing mode as a function of efolding
-
D_plus_z
(z)¶ Normalized solution for the growing mode as a function of redshift
-
Omega_m_a
(a)¶
-
Omega_m_n
(N)¶ Density parameter for matter component as a function of log(a) Input:
N: log(a)- Output:
- Omega_m_n(z): density parameter for matter component as a function of e-folding
Examples: 1) Calculating Omega_m with scalar field with power law potential V=phi^n: n=1 at log(a) = -2
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_m_n(-2)- Calculating present day density parameter Omega_m with scalar field for exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_m_n(0)
-
Omega_m_z
(z)¶ Density parameter for matter component as a function of redshift z Input:
z: redshift- Output:
- Omega_m_z(z): density parameter for matter component as a function of redshift
Examples: 1) Calculating Omega_m with scalar field with power law potential V=phi^n: n=1 at z=2
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_m_z(2)- Calculating present day density parameter Omega_m with scalar field for exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_m_z(0)
-
Omega_phi_n
(N)¶ Density parameter for scalar field as a function of log(a) where ‘a’ is the scale factor of the Universe. Input:
N: log(a)- Output:
- Omega_phi(N): density parameter for scalar field as a function of e-folding
Examples: 1) Calculating Omega_phi for scalar field with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_phi_n(-2)- Calculating present day density parameter scalar field with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_phi_n(0)
-
Omega_phi_z
(z)¶ Density parameter for scalar field as a function of redshift z Input:
z: redshift- Output:
- Omega_phi_z(z): density parameter for scalar field as a function of redshift
Examples: 1) Calculating Omega_phi for scalar field with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_phi_z(2)- Calculating present day density parameter scalar field with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_phi_z(0)
-
Omega_r_n
(N)¶ Density parameter for radiation as a function of log(a) Input:
N: log(a)- Output:
- Omega_r_n(z): density parameter for radiation component as a function of e-folding
Examples: 1) Calculating Omega_r for radiation component with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_r_n(-2)- Calculating present day density parameter of radiation component with scalar field
and exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_r_n(0)
-
Omega_r_z
(z)¶ Density parameter for radiation as a function of redshift z Input:
z: redshift- Output:
- Omega_r_z(z): density parameter for radiation component as a function of redshift
Examples: 1) Calculating Omega_r for scalar field with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).Omega_r_z(2)- Calculating present day density parameter Omega_r with scalar field for exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).Omega_r_z(0)
-
Pk_bbks
(k, z)¶ Matter Power Spectra Pk in units if h^{-3}Mpc^{3} as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be BBKS Ref: Bardeen et. al., Astrophys. J., 304, 15 (1986)
-
Pk_wh
(k, z)¶ Matter Power Spectra Pk in units if h^{-3} Mpc^{3} as a function of k in units of [h Mpc^{-1}] and z; Transfer function is taken to be Eisenstein & Hu (ref(Eisenstein and Hu, Astrophys. J., 496, 605 (1998)))
-
Wf
(k)¶
-
acoustic_length
()¶ It calculates acoustis length scale at decoupling redshift
-
angular_diameter_distance_z
(z)¶ Angular diameter distance as function of redshift z in units of Mpc
-
cmb_shift_parameter
()¶ CMB Shift parameter
-
comoving_distance_n
(N)¶ Line of sight comoving distance as a function of log(a) as described in David Hogg paper in units of Mpc
-
comoving_distance_z
(z)¶ Line of sight comoving distance as a function of redshift z as described in David Hogg paper in units of Mpc
-
deriv
(y1, N)¶
-
equation_of_state_n
(N)¶ Equation of state as a function of log(a) Input:
N: log(a)- Output:
- w(N): equation of state for scalar field component as a function of e-folding N= log(a)
Examples: 1) Calculating w(N) with power law potential V=phi^n with n=1 at e-folding = -2
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).equation_of_state_n(-2)- Calculating present day equation of state of scalar field with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).equation_of_state_n(0)
-
equation_of_state_z
(z)¶ Equation of state as a function of z Input:
z: redshift- Output:
- w(z): equation of state for scalar field component as a function of redshift
Examples: 1) Calculating w(z) with power law potential V=phi^n with n=1 at redshift z = 2
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).equation_of_state_z(2)- Calculating present day equation of state of scalar field with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).equation_of_state_z(0)
-
f
(x, efold)¶
-
fsigma8z
(z)¶ fsigma_{8} as a function of redshift
-
growth_rate_n
(N)¶
-
growth_rate_z
(z)¶ Growth Rate f = D log(Dplus)/ D Log(a) as a function of redshift
-
hubble_normalized_a
(a)¶
-
hubble_normalized_n
(N)¶ Dimensionless Hubble constant as a function of N = log(a)
-
hubble_normalized_z
(z)¶ Dimensionless Hubble parameter as a function of redshift z
-
hubble_prime_normalized
(N)¶ Derivative of dimensionless hubble constant w.r.t. log(a)
-
integrand_bbks
(k)¶
-
integrand_wh
(k)¶
-
inverse_hubble_normalized_z
(z)¶ Inverse of the normalized hubble parameter: 1/h(z) where h(z) = H(z)/H0 Input:
z: redshift- Output:
- 1/h(z): inverse of normalized hubble parameter
-
lookback_time_n
(N)¶ Lookback time as a function of log(a) in units of billion years
-
lookback_time_z
(z)¶ Lookback time as a function of redshift z in units of billion years
-
luminosity_distance_z
(z)¶ Luminosity distance in as function of redshift z in units of Mpc
-
n1
= array([-7.00397414, -6.99696315, -6.98995217, -6.98294118, -6.9759302 , -6.96891921, -6.96190823, -6.95489724, -6.94788626, -6.94087527, -6.93386429, -6.9268533 , -6.91984232, -6.91283133, -6.90582035, -6.89880936, -6.89179837, -6.88478739, -6.8777764 , -6.87076542, -6.86375443, -6.85674345, -6.84973246, -6.84272148, -6.83571049, -6.82869951, -6.82168852, -6.81467754, -6.80766655, -6.80065557, -6.79364458, -6.7866336 , -6.77962261, -6.77261163, -6.76560064, -6.75858966, -6.75157867, -6.74456769, -6.7375567 , -6.73054572, -6.72353473, -6.71652375, -6.70951276, -6.70250178, -6.69549079, -6.68847981, -6.68146882, -6.67445784, -6.66744685, -6.66043587, -6.65342488, -6.6464139 , -6.63940291, -6.63239193, -6.62538094, -6.61836996, -6.61135897, -6.60434798, -6.597337 , -6.59032601, -6.58331503, -6.57630404, -6.56929306, -6.56228207, -6.55527109, -6.5482601 , -6.54124912, -6.53423813, -6.52722715, -6.52021616, -6.51320518, -6.50619419, -6.49918321, -6.49217222, -6.48516124, -6.47815025, -6.47113927, -6.46412828, -6.4571173 , -6.45010631, -6.44309533, -6.43608434, -6.42907336, -6.42206237, -6.41505139, -6.4080404 , -6.40102942, -6.39401843, -6.38700745, -6.37999646, -6.37298548, -6.36597449, -6.35896351, -6.35195252, -6.34494154, -6.33793055, -6.33091957, -6.32390858, -6.31689759, -6.30988661, -6.30287562, -6.29586464, -6.28885365, -6.28184267, -6.27483168, -6.2678207 , -6.26080971, -6.25379873, -6.24678774, -6.23977676, -6.23276577, -6.22575479, -6.2187438 , -6.21173282, -6.20472183, -6.19771085, -6.19069986, -6.18368888, -6.17667789, -6.16966691, -6.16265592, -6.15564494, -6.14863395, -6.14162297, -6.13461198, -6.127601 , -6.12059001, -6.11357903, -6.10656804, -6.09955706, -6.09254607, -6.08553509, -6.0785241 , -6.07151312, -6.06450213, -6.05749115, -6.05048016, -6.04346918, -6.03645819, -6.0294472 , -6.02243622, -6.01542523, -6.00841425, -6.00140326, -5.99439228, -5.98738129, -5.98037031, -5.97335932, -5.96634834, -5.95933735, -5.95232637, -5.94531538, -5.9383044 , -5.93129341, -5.92428243, -5.91727144, -5.91026046, -5.90324947, -5.89623849, -5.8892275 , -5.88221652, -5.87520553, -5.86819455, -5.86118356, -5.85417258, -5.84716159, -5.84015061, -5.83313962, -5.82612864, -5.81911765, -5.81210667, -5.80509568, -5.7980847 , -5.79107371, -5.78406273, -5.77705174, -5.77004076, -5.76302977, -5.75601879, -5.7490078 , -5.74199681, -5.73498583, -5.72797484, -5.72096386, -5.71395287, -5.70694189, -5.6999309 , -5.69291992, -5.68590893, -5.67889795, -5.67188696, -5.66487598, -5.65786499, -5.65085401, -5.64384302, -5.63683204, -5.62982105, -5.62281007, -5.61579908, -5.6087881 , -5.60177711, -5.59476613, -5.58775514, -5.58074416, -5.57373317, -5.56672219, -5.5597112 , -5.55270022, -5.54568923, -5.53867825, -5.53166726, -5.52465628, -5.51764529, -5.51063431, -5.50362332, -5.49661234, -5.48960135, -5.48259037, -5.47557938, -5.4685684 , -5.46155741, -5.45454642, -5.44753544, -5.44052445, -5.43351347, -5.42650248, -5.4194915 , -5.41248051, -5.40546953, -5.39845854, -5.39144756, -5.38443657, -5.37742559, -5.3704146 , -5.36340362, -5.35639263, -5.34938165, -5.34237066, -5.33535968, -5.32834869, -5.32133771, -5.31432672, -5.30731574, -5.30030475, -5.29329377, -5.28628278, -5.2792718 , -5.27226081, -5.26524983, -5.25823884, -5.25122786, -5.24421687, -5.23720589, -5.2301949 , -5.22318392, -5.21617293, -5.20916195, -5.20215096, -5.19513998, -5.18812899, -5.18111801, -5.17410702, -5.16709603, -5.16008505, -5.15307406, -5.14606308, -5.13905209, -5.13204111, -5.12503012, -5.11801914, -5.11100815, -5.10399717, -5.09698618, -5.0899752 , -5.08296421, -5.07595323, -5.06894224, -5.06193126, -5.05492027, -5.04790929, -5.0408983 , -5.03388732, -5.02687633, -5.01986535, -5.01285436, -5.00584338, -4.99883239, -4.99182141, -4.98481042, -4.97779944, -4.97078845, -4.96377747, -4.95676648, -4.9497555 , -4.94274451, -4.93573353, -4.92872254, -4.92171156, -4.91470057, -4.90768959, -4.9006786 , -4.89366762, -4.88665663, -4.87964564, -4.87263466, -4.86562367, -4.85861269, -4.8516017 , -4.84459072, -4.83757973, -4.83056875, -4.82355776, -4.81654678, -4.80953579, -4.80252481, -4.79551382, -4.78850284, -4.78149185, -4.77448087, -4.76746988, -4.7604589 , -4.75344791, -4.74643693, -4.73942594, -4.73241496, -4.72540397, -4.71839299, -4.711382 , -4.70437102, -4.69736003, -4.69034905, -4.68333806, -4.67632708, -4.66931609, -4.66230511, -4.65529412, -4.64828314, -4.64127215, -4.63426117, -4.62725018, -4.6202392 , -4.61322821, -4.60621723, -4.59920624, -4.59219525, -4.58518427, -4.57817328, -4.5711623 , -4.56415131, -4.55714033, -4.55012934, -4.54311836, -4.53610737, -4.52909639, -4.5220854 , -4.51507442, -4.50806343, -4.50105245, -4.49404146, -4.48703048, -4.48001949, -4.47300851, -4.46599752, -4.45898654, -4.45197555, -4.44496457, -4.43795358, -4.4309426 , -4.42393161, -4.41692063, -4.40990964, -4.40289866, -4.39588767, -4.38887669, -4.3818657 , -4.37485472, -4.36784373, -4.36083275, -4.35382176, -4.34681078, -4.33979979, -4.33278881, -4.32577782, -4.31876684, -4.31175585, -4.30474486, -4.29773388, -4.29072289, -4.28371191, -4.27670092, -4.26968994, -4.26267895, -4.25566797, -4.24865698, -4.241646 , -4.23463501, -4.22762403, -4.22061304, -4.21360206, -4.20659107, -4.19958009, -4.1925691 , -4.18555812, -4.17854713, -4.17153615, -4.16452516, -4.15751418, -4.15050319, -4.14349221, -4.13648122, -4.12947024, -4.12245925, -4.11544827, -4.10843728, -4.1014263 , -4.09441531, -4.08740433, -4.08039334, -4.07338236, -4.06637137, -4.05936039, -4.0523494 , -4.04533842, -4.03832743, -4.03131645, -4.02430546, -4.01729447, -4.01028349, -4.0032725 , -3.99626152, -3.98925053, -3.98223955, -3.97522856, -3.96821758, -3.96120659, -3.95419561, -3.94718462, -3.94017364, -3.93316265, -3.92615167, -3.91914068, -3.9121297 , -3.90511871, -3.89810773, -3.89109674, -3.88408576, -3.87707477, -3.87006379, -3.8630528 , -3.85604182, -3.84903083, -3.84201985, -3.83500886, -3.82799788, -3.82098689, -3.81397591, -3.80696492, -3.79995394, -3.79294295, -3.78593197, -3.77892098, -3.77191 , -3.76489901, -3.75788803, -3.75087704, -3.74386606, -3.73685507, -3.72984408, -3.7228331 , -3.71582211, -3.70881113, -3.70180014, -3.69478916, -3.68777817, -3.68076719, -3.6737562 , -3.66674522, -3.65973423, -3.65272325, -3.64571226, -3.63870128, -3.63169029, -3.62467931, -3.61766832, -3.61065734, -3.60364635, -3.59663537, -3.58962438, -3.5826134 , -3.57560241, -3.56859143, -3.56158044, -3.55456946, -3.54755847, -3.54054749, -3.5335365 , -3.52652552, -3.51951453, -3.51250355, -3.50549256, -3.49848158, -3.49147059, -3.48445961, -3.47744862, -3.47043764, -3.46342665, -3.45641567, -3.44940468, -3.44239369, -3.43538271, -3.42837172, -3.42136074, -3.41434975, -3.40733877, -3.40032778, -3.3933168 , -3.38630581, -3.37929483, -3.37228384, -3.36527286, -3.35826187, -3.35125089, -3.3442399 , -3.33722892, -3.33021793, -3.32320695, -3.31619596, -3.30918498, -3.30217399, -3.29516301, -3.28815202, -3.28114104, -3.27413005, -3.26711907, -3.26010808, -3.2530971 , -3.24608611, -3.23907513, -3.23206414, -3.22505316, -3.21804217, -3.21103119, -3.2040202 , -3.19700922, -3.18999823, -3.18298725, -3.17597626, -3.16896528, -3.16195429, -3.1549433 , -3.14793232, -3.14092133, -3.13391035, -3.12689936, -3.11988838, -3.11287739, -3.10586641, -3.09885542, -3.09184444, -3.08483345, -3.07782247, -3.07081148, -3.0638005 , -3.05678951, -3.04977853, -3.04276754, -3.03575656, -3.02874557, -3.02173459, -3.0147236 , -3.00771262, -3.00070163, -2.99369065, -2.98667966, -2.97966868, -2.97265769, -2.96564671, -2.95863572, -2.95162474, -2.94461375, -2.93760277, -2.93059178, -2.9235808 , -2.91656981, -2.90955883, -2.90254784, -2.89553686, -2.88852587, -2.88151489, -2.8745039 , -2.86749291, -2.86048193, -2.85347094, -2.84645996, -2.83944897, -2.83243799, -2.825427 , -2.81841602, -2.81140503, -2.80439405, -2.79738306, -2.79037208, -2.78336109, -2.77635011, -2.76933912, -2.76232814, -2.75531715, -2.74830617, -2.74129518, -2.7342842 , -2.72727321, -2.72026223, -2.71325124, -2.70624026, -2.69922927, -2.69221829, -2.6852073 , -2.67819632, -2.67118533, -2.66417435, -2.65716336, -2.65015238, -2.64314139, -2.63613041, -2.62911942, -2.62210844, -2.61509745, -2.60808647, -2.60107548, -2.5940645 , -2.58705351, -2.58004252, -2.57303154, -2.56602055, -2.55900957, -2.55199858, -2.5449876 , -2.53797661, -2.53096563, -2.52395464, -2.51694366, -2.50993267, -2.50292169, -2.4959107 , -2.48889972, -2.48188873, -2.47487775, -2.46786676, -2.46085578, -2.45384479, -2.44683381, -2.43982282, -2.43281184, -2.42580085, -2.41878987, -2.41177888, -2.4047679 , -2.39775691, -2.39074593, -2.38373494, -2.37672396, -2.36971297, -2.36270199, -2.355691 , -2.34868002, -2.34166903, -2.33465805, -2.32764706, -2.32063608, -2.31362509, -2.30661411, -2.29960312, -2.29259213, -2.28558115, -2.27857016, -2.27155918, -2.26454819, -2.25753721, -2.25052622, -2.24351524, -2.23650425, -2.22949327, -2.22248228, -2.2154713 , -2.20846031, -2.20144933, -2.19443834, -2.18742736, -2.18041637, -2.17340539, -2.1663944 , -2.15938342, -2.15237243, -2.14536145, -2.13835046, -2.13133948, -2.12432849, -2.11731751, -2.11030652, -2.10329554, -2.09628455, -2.08927357, -2.08226258, -2.0752516 , -2.06824061, -2.06122963, -2.05421864, -2.04720766, -2.04019667, -2.03318569, -2.0261747 , -2.01916372, -2.01215273, -2.00514174, -1.99813076, -1.99111977, -1.98410879, -1.9770978 , -1.97008682, -1.96307583, -1.95606485, -1.94905386, -1.94204288, -1.93503189, -1.92802091, -1.92100992, -1.91399894, -1.90698795, -1.89997697, -1.89296598, -1.885955 , -1.87894401, -1.87193303, -1.86492204, -1.85791106, -1.85090007, -1.84388909, -1.8368781 , -1.82986712, -1.82285613, -1.81584515, -1.80883416, -1.80182318, -1.79481219, -1.78780121, -1.78079022, -1.77377924, -1.76676825, -1.75975727, -1.75274628, -1.7457353 , -1.73872431, -1.73171333, -1.72470234, -1.71769135, -1.71068037, -1.70366938, -1.6966584 , -1.68964741, -1.68263643, -1.67562544, -1.66861446, -1.66160347, -1.65459249, -1.6475815 , -1.64057052, -1.63355953, -1.62654855, -1.61953756, -1.61252658, -1.60551559, -1.59850461, -1.59149362, -1.58448264, -1.57747165, -1.57046067, -1.56344968, -1.5564387 , -1.54942771, -1.54241673, -1.53540574, -1.52839476, -1.52138377, -1.51437279, -1.5073618 , -1.50035082, -1.49333983, -1.48632885, -1.47931786, -1.47230688, -1.46529589, -1.45828491, -1.45127392, -1.44426294, -1.43725195, -1.43024096, -1.42322998, -1.41621899, -1.40920801, -1.40219702, -1.39518604, -1.38817505, -1.38116407, -1.37415308, -1.3671421 , -1.36013111, -1.35312013, -1.34610914, -1.33909816, -1.33208717, -1.32507619, -1.3180652 , -1.31105422, -1.30404323, -1.29703225, -1.29002126, -1.28301028, -1.27599929, -1.26898831, -1.26197732, -1.25496634, -1.24795535, -1.24094437, -1.23393338, -1.2269224 , -1.21991141, -1.21290043, -1.20588944, -1.19887846, -1.19186747, -1.18485649, -1.1778455 , -1.17083452, -1.16382353, -1.15681255, -1.14980156, -1.14279057, -1.13577959, -1.1287686 , -1.12175762, -1.11474663, -1.10773565, -1.10072466, -1.09371368, -1.08670269, -1.07969171, -1.07268072, -1.06566974, -1.05865875, -1.05164777, -1.04463678, -1.0376258 , -1.03061481, -1.02360383, -1.01659284, -1.00958186, -1.00257087, -0.99555989, -0.9885489 , -0.98153792, -0.97452693, -0.96751595, -0.96050496, -0.95349398, -0.94648299, -0.93947201, -0.93246102, -0.92545004, -0.91843905, -0.91142807, -0.90441708, -0.8974061 , -0.89039511, -0.88338413, -0.87637314, -0.86936216, -0.86235117, -0.85534018, -0.8483292 , -0.84131821, -0.83430723, -0.82729624, -0.82028526, -0.81327427, -0.80626329, -0.7992523 , -0.79224132, -0.78523033, -0.77821935, -0.77120836, -0.76419738, -0.75718639, -0.75017541, -0.74316442, -0.73615344, -0.72914245, -0.72213147, -0.71512048, -0.7081095 , -0.70109851, -0.69408753, -0.68707654, -0.68006556, -0.67305457, -0.66604359, -0.6590326 , -0.65202162, -0.64501063, -0.63799965, -0.63098866, -0.62397768, -0.61696669, -0.60995571, -0.60294472, -0.59593374, -0.58892275, -0.58191177, -0.57490078, -0.56788979, -0.56087881, -0.55386782, -0.54685684, -0.53984585, -0.53283487, -0.52582388, -0.5188129 , -0.51180191, -0.50479093, -0.49777994, -0.49076896, -0.48375797, -0.47674699, -0.469736 , -0.46272502, -0.45571403, -0.44870305, -0.44169206, -0.43468108, -0.42767009, -0.42065911, -0.41364812, -0.40663714, -0.39962615, -0.39261517, -0.38560418, -0.3785932 , -0.37158221, -0.36457123, -0.35756024, -0.35054926, -0.34353827, -0.33652729, -0.3295163 , -0.32250532, -0.31549433, -0.30848335, -0.30147236, -0.29446138, -0.28745039, -0.2804394 , -0.27342842, -0.26641743, -0.25940645, -0.25239546, -0.24538448, -0.23837349, -0.23136251, -0.22435152, -0.21734054, -0.21032955, -0.20331857, -0.19630758, -0.1892966 , -0.18228561, -0.17527463, -0.16826364, -0.16125266, -0.15424167, -0.14723069, -0.1402197 , -0.13320872, -0.12619773, -0.11918675, -0.11217576, -0.10516478, -0.09815379, -0.09114281, -0.08413182, -0.07712084, -0.07010985, -0.06309887, -0.05608788, -0.0490769 , -0.04206591, -0.03505493, -0.02804394, -0.02103296, -0.01402197, -0.00701099, 0. ])¶
-
sol
()¶
-
sol1
()¶
-
sound_horizon
(z)¶ Sound horizon as a function of redshift ‘z’
-
sound_horizon1
(z)¶
-
t_H
()¶ Hubble time in units of Billion years
-
time_delay_distance
(zd, zs)¶ Time delay distance used in strong lensing cosmography (See Suyu et. al., Astrophys. J. 766, 70, 2013; arxiv:1208.6010) Input:
zd = redshift at which the deflector (or lens) is present zs = redshift at which the source is placed- Output:
- Time_delay_distance
-
z_decoupling
()¶ redshift of decoupling or reionization Input:
None- Output:
- z_decoupling
Example: 1) Calculating z_decoupling with power law potential V=phi^n with n=1
> import scalpy.scalar as s1 > s1.scalarpow(2.,0.2,1.,0.1).z_decoupling()- Calculating z_decoupling in scalar field model with exponential potential
> import scalpy.scalar as s1 > s1.scalarexp(2.,0.2,0.1).z_decoupling()
-
z_drag_epoch
()¶ Gives the redshit of baryon drag epoch Eisenstein and Hu; arxiv:astro-ph/9709112 Input:
None- Output:
- z_drag_epoch
-
-
class
scalpy.scalar.
tachyonexp
(Ophi_i, li, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.scalar.tachyonpow
A Class to calculate cosmological observables for tachyon field with power law potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for tachyon field li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
f
(x, efold)¶
-
-
class
scalpy.scalar.
tachyonpow
(Ophi_i, li, n, Orad_i, h=0.7, Ob0=0.045, ns=0.96, sigma_8=0.8)¶ Bases:
scalpy.scalar.scalarpow
A Class to calculate cosmological observables for tachyon field with power law potential.
parameters are: Ophi_i : initial value (at a = 0.001) of density parameter for tachyon field li : initial value (at a = 0.001) for the slope of potential (-V’(phi)/V(phi)) n : order of power law potential V(phi)=phi**n Ob0 : present day density parameter for baryons (or visible matter) ns : spectral index for primordial power spectrum h : dimensionless parameter related to Hubble constant H0 = 100*h km s^-1 Mpc^-1 sigma_8 : r.m.s. mass fluctuation on 8h^-1 Mpc scale
-
f
(x, efold)¶
-
scalpy.transfer_func module¶
-
scalpy.transfer_func.
C1
(x, k, om0, h)¶
-
scalpy.transfer_func.
G
(x)¶
-
scalpy.transfer_func.
Rd
(om0, ob0, h)¶
-
scalpy.transfer_func.
Req
(om0, ob0, h)¶
-
scalpy.transfer_func.
T0
(k, x, y, om0, ob0, h)¶
-
scalpy.transfer_func.
Tb
(k, x1, y1, om0, ob0, h)¶
-
scalpy.transfer_func.
Tbbks
(k, om0, ob0, h)¶
-
scalpy.transfer_func.
Tc
(k, x, y, om0, ob0, h)¶
-
scalpy.transfer_func.
Twh
(k, om0, ob0, h)¶
-
scalpy.transfer_func.
a1
(om0, h)¶
-
scalpy.transfer_func.
a2
(om0, h)¶
-
scalpy.transfer_func.
alphab
(om0, ob0, h)¶
-
scalpy.transfer_func.
alphac
(om0, ob0, h)¶
-
scalpy.transfer_func.
b1
(om0, h)¶
-
scalpy.transfer_func.
b2
(om0, h)¶
-
scalpy.transfer_func.
bb1
(om0, h)¶
-
scalpy.transfer_func.
bb2
(om0, h)¶
-
scalpy.transfer_func.
betab
(om0, ob0, h)¶
-
scalpy.transfer_func.
betac
(om0, ob0, h)¶
-
scalpy.transfer_func.
betanode
(om0, h)¶
-
scalpy.transfer_func.
f
(k, om0, ob0, h)¶
-
scalpy.transfer_func.
gm
(om0, ob0, h)¶
-
scalpy.transfer_func.
keq
(om0, h)¶
-
scalpy.transfer_func.
ksilk
(om0, ob0, h)¶
-
scalpy.transfer_func.
q
(k, om0, h)¶
-
scalpy.transfer_func.
q1
(k, om0, ob0, h)¶
-
scalpy.transfer_func.
s
(om0, ob0, h)¶
-
scalpy.transfer_func.
s1
(k, om0, ob0, h)¶
-
scalpy.transfer_func.
zd
(om0, ob0, h)¶
-
scalpy.transfer_func.
zeq
(om0, h)¶