Mathematical Methods of Physics II

Graduate School - Second Semester

Course Outline

Group Theory

- 1. Basic Concepts of Group Theory
 - Finite groups
 - Representations and reducibility
- 2. Lie Groups
 - Manifold structure, integration
 - Lie algebras
 - Global properties; relationship between groups and algebras
 - Fundamental and adjoint representations
 - SU(2) and its representations
- 3. Structure of Lie Algebras
 - Roots and weights
 - Dynkin diagrams
 - Classical groups: SO(n), SU(n), Sp(n), Exceptional groups
- 4. Representations
 - Tensor methods
 - Clebsch-Gordan decomposition
 - Young tableaux
- 5. Noncompact Groups
 - Real and complex forms
 - Lorentz group: global structure, discrete subgroups, representations, fermions
 - •

Path Integral Methods

- Defining sums over paths
- Relation to standard formalism
- Phase space path integrals
- Evaulating gaussian integrals

BOOKS:-

- 1. Georgi, Lie Algebras in Particle Physics
- 2. Cornwell, Group Theory in Physics: An Introduction
- 3. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications
- 4. Feyman and Hibbs: Quantum Mechanics and Path Integrals