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Université Pierre & Marie Curie,

98bis boulevard Arago, 75014 Paris, France

Instituto de F́ısica,
Pontificia Universidad de Católica de Valparáıso,
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Emmanuel Saridakis@baylor.edu

Received 31 October 2014
Revised 15 January 2015
Accepted 16 January 2015
Published 3 March 2015

This pedagogical review is devoted to quintessential inflation, which refers to unification
of inflation and dark energy using a single scalar field. We present a brief but con-
cise description of the concepts needed to join the two ends, which include discussion
on scalar field dynamic, conformal coupling, instant preheating and relic gravitational
waves. Models of quintessential inflation broadly fall into two classes, depending upon
the early and late time behavior of the field potential. In the first type we include mod-
els in which the field potential is steep for most of the history of the universe but turn
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shallow at late times, whereas in the second type the potential is shallow at early times
followed by a steep behavior thereafter. In models of the first category inflation can be
realized by invoking high-energy brane-induced damping, which is needed to facilitate
slow roll along a steep potential. In models of second type one may invoke a nonminimal
coupling of the scalar field with massive neutrino matter, which might induce a minimum
in the potential at late times as neutrinos turn nonrelativistic. In this category we review
a class of models with noncanonical kinetic term in the Lagrangian, which can comply
with recent B mode polarization measurements. The scenario under consideration is
distinguished by the presence of a kinetic phase, which precedes the radiative regime,
giving rise to blue spectrum of gravity waves generated during inflation. We highlight
the generic features of quintessential inflation and also discuss on issues related to Lyth
bound.

Keywords: Variable gravity; quintessential inflation; gravitational waves.

PACS Number(s): 98.80.−k, 98.80.Cq, 95.36.+x, 04.50.Kd

1. Introduction

The list of great successes of the standard model of the universe, dubbed hot
big bang, includes its predictions about the universe expansion,1 the existence of
microwave background2 and the synthesis of light elements in the early universe.3–13

In the model, there is a profound mechanism of clustering, via gravitational insta-
bility, provided primordial density perturbations are assumed. The generation of
tiny fluctuations observed by COBE in 1992,14 required for structure formation,
are beyond the scope of hot big bang. Additionally, the standard model also suffers
from inherent logical inconsistencies such as the flatness problem, the horizon prob-
lem and others, which imply the incompleteness of the scenario. Inflation15–19 is a
beautiful paradigm which not only addresses the said shortcomings but also pro-
vides us a quantum mechanical generation mechanism for primordial fluctuations−
scalar (density) perturbations and tensor perturbations or primordial gravitational
waves.20–28

Inflation predicts a nearly flat spectrum of density perturbations, whose ampli-
tude needs to be fixed using COBE normalization.29,30 Perhaps the clearest predic-
tion of inflation is related to the generation of gravitational waves at its end. The
relic gravitational waves31–57 can give rise to B mode polarization of CMB, which
depends upon the tensor-to-scalar ratio of perturbations r.58–60 The recent BICEP2
measurements reveal that r � 0.2,61 thereby the amplitude of gravitational waves
is sizeable such that the scale of inflation is around the GUT scale. The large value
of r, in the framework of single-field inflation is directly related to the range of
inflation, giving rise to super Planckian excursion of the inflaton field,22,62–66 which
throws a challenge to effective field theoretic description of inflation. Even if the
BICEP2 results are not confirmed, it looks quite likely that r = 0 would stand ruled
out, thereby strengthening the belief that inflation is a viable early time completion
of the standard model of universe.

There is one more shortcoming the hot big bang is plagued with, namely the
age crisis, which is related to the late-time evolution of the universe.67–69 The only
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way to circumvent the problem in the standard lore is to add a repulsive effect,
triggered by a positive cosmological constant,70 or by a slowly rolling scalar field
with mass of the order of H0 called quintessence.71–81 Thus, the resolution of the
age-related inconsistency asks for late time cosmic acceleration82–92 discovered in
1998 by supernovae Ia observations93–95 and supported indirectly thereafter by
other probes.96–107

It is amazing that both the early and late time completions of the standard
model of the universe require accelerated expansion. Often, these two phases of
acceleration are treated separately. It is tempting to think that there is a unique
cause responsible for both the phases, or the late time cosmic acceleration is nothing
but the reincarnation of inflation, and such a paradigm is known as quintessential
inflation48–50,108,109 (see also Refs. 110 and 152). In simple cases inflation is driven
by a scalar field, which soon after the end of inflation enters into an oscillatory
phase and fastly decays in particle species giving rise to reheating/preheating of
the universe.153–160 However, if the single scalar field is to unify both early and
late time cosmic acceleration, it should survive till the late times, thus the conven-
tional reheating would fail in this case. The second obstacle to unification is related
to a very accurate description of the thermal history of the universe by the big
bang model. Indeed, invoking a new degree of freedom over and above the stan-
dard model of particle physics should be sufficiently suppressed to be consistent
with nucleleosynthesis constraint. Clearly the scalar field should evolve in a specific
manner to accomplish the task of joining the two ends: It should evolve very slowly
at early times followed by fast roll after inflation such that it goes into hiding for
most of the history of universe. It should reappear only around the present epoch to
account for the late time acceleration. It is desirable that late time evolution should
have no memory about the initial conditions, which requires a specific scalar field
dynamics. The desired field evolution can be guaranteed by a field potential which
is effectively shallow at early times, followed by steep behavior of approximately
exponential type giving rise to scaling regime such that the field mimics the back-
ground. The late time features in the potential should then trigger the exit from
the scaling regime.

Broadly, there are two types of models in which unification of inflation and
quintessence can be achieved. First, models which use field potentials that are steep
except at late time where they turn (effectively) shallow. In this case extra damping
is required to facilitate the slow roll in the early phase. In the Randall–Sundrum
brane worlds,161–163 the high energy corrections to Einstein equations can provide
the required damping facilitating slow roll along a steep potential, such that the
high energy effect disappears as the field rolls down its potential allowing for a
graceful exit from inflation.48–50,109–111,164–167 The post inflationary dynamics in
this case would be as desired, though the tensor-to-scalar ratio is somewhat larger
than its recently measured values.

The second option is provided by models based upon field potentials which are
shallow in the early phase followed by scaling behavior thereafter. It is easier to
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cast such a class of models using noncanonical kinetic terms in the Lagrangian. The
exit from scaling solution at late times can be triggered in this case by the presence
of nonminimal coupling to massive neutrino matter.146,147,168 For neutrinos with
masses around 1 eV, the coupling to field builds up around the present epoch,
leading to minimum in the potential which is otherwise of run-away type. If field
rolls slowly around the minimum, we may obtain a desired late time behavior.146,168

Quintessential inflation possesses certain general features: (i) Standard reheat-
ing mechanism is not applicable in this case. (ii) Post inflationary dynamics is
governed by the kinetic regime. The first aspect poses a problem, whereas the sec-
ond one provides an excellent perspective which could allow to falsify the scenario
of quintessential inflation irrespectively of the underlying model. However, both
problems and prospects are intrinsically related to each other. One of the known
nonconventional reheating mechanisms could be achieved via gravitational particle
production. Nevertheless, it is an inefficient process leading to long kinetic regime
before the commencement of radiation domination. And here comes the punch
line since the evolution of gravitational waves generated during inflation crucially
depends on the post-evolutionary equation of state.35,37,38,45 During radiation and
matter dominated epochs the relic gravitational waves track the background, but
during the kinetic regime the ratio of energy density in gravitational waves to the
background energy density enhances and might conflict with the nucleosynthesis
constraint at the commencement of radiative regime, depending upon the duration
of the kinetic regime. This is what happens in the case of gravitational particle pro-
duction. The instant preheating mechanism169–171 can circumvent the problem. Let
us emphasize that one of the generic prediction of quintessential inflation, irrespec-
tively of the underlying model, is the blue spectrum of relic gravitational waves
produced during the transition from inflation to kinetic regime, which could be
tested by observations like Advanced LIGO and LISA.

The present review is dedicated to quintessential inflation and aims for both the
young researchers and experts. All the essential ingredients required to implement
the underlying idea are described; the exposition is coherent and pedagogical. In
Sec. 2, we give the building blocks of quintessential inflation, and we present a
brief account of scaling/tracker solutions and dynamics of nonminimally coupled
scalar field. Moreover, we include a discussion on the difficulties associated with
the fundamental scalar field à la naturalness. As a prerequisite to quintessential
inflation we herewith include the essentials of relic gravitational waves and instant
preheating. In Sec. 3, we review the steep braneworld inflation and its unification
with dark energy. The last subsection of Sec. 3 is devoted to quintessential inflation
described by Lagrangians with a noncanonical form and nonminimally coupling to
massive neutrino matter.

Last but not the least, a brief guideline for reading the review and its follow
up is in order. Readers not acquitted with the theme are advised to read through
subsections of Sec. 2. Results in subsection on scalar field dynamics can easily be
worked out. Concerning the subsection on conformal transformation, in case the
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reader is interested in details, we recommend to read it with the help of Refs. 172
and 173. Subsection on relic gravitational waves is a bit technical. In the first
reading one might go through it leaving the details aside. Readers interested in
more details are referred to Refs. 34 and 35, as well as to later works.37,38,45,48,174

Experts may directly begin with Sec. 3. While reaching Sec. 3 we recommend in the
first reading to begin directly from the Einstein frame action (118). Throughout
the manuscript we use the metric signature (−,+,+,+), and conventions R =
gαβRαβ ;RµνRαµαν ;R

µ
ναβ = ∂αΓµνβ+ · · · . Finally, we use the system of units � = c =

1 and the notation 8πG = M−2
Pl .

2. Building Blocks and Ingredients of Quintessential Inflation

As mentioned in the Introduction, one needs specific features of scalar field dynam-
ics such that the traditional big bang evolution is sandwiched between two phases
of accelerated expansion. It is desirable that the dynamics be insensitive to a broad
choice of initial conditions. In what follows we shall describe scaling solutions and
late time exit from them à la tracking behavior.175

2.1. Scalar field dynamics, attractors and late time acceleration

For our purpose we need a slowly-rolling field in the beginning followed by fast
roll thereafter, till late times where slow roll again needs to be commenced. In the
presence of background (matter/radiation) we aim to find solutions of interest to
quintessential inflation. Let us first consider a minimally coupled scalar field, with
action

S = −
∫ [

1
2
gµν∂µφ∂νφ+ V (φ)

]√−gd4x. (1)

The energy–momentum tensor corresponding to action (1) is given by

Tµν ≡ −2
1√−g

δS
δgµν

= ∂µφ∂νφ− gµν

[
1
2
gαβ∂αφ∂βφ+ V (φ)

]
. (2)

Specializing to spatially flat homogeneous and isotropic background,

ds2 = −dt2 + a2(t)δijdxidxj , (3)

one obtains the expressions of pressure and energy density of the scalar-field system
as

ρφ ≡ T 0
0 =

φ̇2

2
+ V (φ); pφ ≡ T 1

1 =
φ̇2

2
− V (φ). (4)

The Euler Lagrangian equation for the action (1) in the FRW background (
√−g =

a3), acquires the simple form

φ̈+ 3Hφ̇+ V ′(φ) = 0 ⇒ ρ̇φ + 3Hρφ(1 + wφ) = 0, (5)

where a prime denotes the derivative with respect to the field, dots denote deriva-
tives with respect to the cosmic time, H is the Hubble parameter and wφ = pφ/ρφ is
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the equation of state parameter for the field. The Friedmann equation is written as

3H2M2
Pl = ρφ, (6)

where we have ignored other components of energy density present in the universe.
The equation of motion (5) formally integrates to

ρφ = ρφ0e−3
R

(1+wφ)da
a → ρφ ∼ a−n, 0 ≤ n ≤ 6, (7)

where n = 0 corresponds to wφ = −1 (cosmological constant), whereas the other
limiting case relates to wφ = 1 (stiff matter) which can be realized by slowly (fast)
rolling scalar field along a flat (steep) potential.

As mentioned in the Introduction, we are interested in specific solutions of scalar
field dynamics, in presence of the background energy density (radiation/matter) ρb,
in which case the Friedmann equation becomes

3H2M2
Pl = ρφ + ρb. (8)

In order to exhibit the interesting features of the dynamics we cast the evolution
equations in autonomous form, by invoking the dimensionless variables78,82,176–183

x =
φ̇√

6MPlH
, y =

√
V√

3MPlH
, λ = MPl

V ′

V
, Γ =

V V ′′

V ′2 . (9)

The evolution equations obtain the form

dx
dN

= −3x+
√

6
2
λy2 +

3
2
x[(1 − wb)x2 + (1 + wb)(1 − y2)], (10)

dy
dN

=
√

6
2
λxy +

3
2
y[(1 − wb)x2 + (1 + wb)(1 − y2)], (11)

dλ
dN

= −√
6λ2(Γ − 1)x, (12)

where N = ln(a), while the Friedmann equation yields the constraint equation

x2 + y2 +
ρb

3M2
PlH

2
= 1. (13)

The equation of state and the dimensionless density parameter are conveniently
expressed through x and y as

wφ ≡ pφ
ρφ

=
x2 − y2

x2 + y2
; Ωφ ≡ ρφ

3M2
PlH

2
= x2 + y2. (14)

Let us first consider a particularly important case when Γ = 1, implying a
constant slope of potential λ = const. that corresponds to an exponential potential,
namely

V (φ) = V0e
− λφ

MPl , (15)

in which case the last equation (12) decouples from the system of autonomous
equations. We then extract the fixed points by setting dx/dN = 0 and dy/dN = 0.
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The fixed points which are relevant are those around which the perturbations die
out exponentially, namely the stable points. In case of an exponential potential, we
have two stable fixed points

1. x =
λ√
6
; y =

√
1 − λ2

6
; wφ =

λ2

3
− 1; Ωφ = 1, λ2 < 3(1 + wb), (16)

2. x =
(

3
2

)1/2 1 + wb

λ
; y =

(
3(1 − w2

b)
2λ2

)1/2

; wφ = wb;

Ωφ =
3(1 + wb)

λ2
; λ2 > 3(1 + wb). (17)

The first fixed point corresponds to field-dominated solution which is stable pro-
vided that λ2 < 3(1 + wb) and gives rise to acceleration in case of λ <

√
2, which

is well known from slow roll conditions. The second fixed point is very interesting
and exists for a steep potential. This solution dubbed scaling solution78,176,177,184

mimics the background such that ρφ/ρb = const (see Fig. 1(a)). A scaling solution
is desired for most of the history of the universe.

Let us note that fixed points (1) and (2) are mutually excluding. In a realistic
scenario, in certain sense, we need both of them together. In that case we need
a feature in the potential that could allow to exit from the scaling solution and
get into the field-dominated solution described by fixed point (2). Clearly, we need
to go beyond exponential potential, in a way that the potential mimics a steep-
exponential-like behavior for most of the time and turns shallow at late times to
mimic the first fixed point.

Background

Scalar
Field

Log a

Log ρ

Background

Scalar
Field

Log a

Log ρ

(a) (b)

Fig. 1. Schematic diagram of scaling (a) and tracker (b) behavior. Different dashed lines in the
Fig. 1(b) correspond to different initial conditions for the field. This signifies that field joins the
tracker sooner or later depending upon the initial conditions.
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Let us now move away from Γ = 1 or the exponential potential. In case Γ > 1
the slope decreases from higher values to zero, giving rise to accelerated expansion
at late times. The condition Γ > 1 is regarded as the tracking condition under
which the field energy density eventually catches up with the background. When
Γ < 1 the slope increases, and since the potential is steep in this case the energy
density of the scalar field becomes negligible compared to that of the background
energy density. This case is not interesting in view of accelerated expansion at
late times. In order to construct viable quintessence models, we require that the
potential should satisfy the tracking condition. For instance, Γ = (n+ 1) = n > 1
in case of the inverse power-law potentials V (φ) ∼ φ−n with n > 0. This implies
that the tracking occurs for this potential. In this case the field rolls from small
values toward infinity and thereby the potential is steep at early epochs and turn
shallow at late times. Since inverse power-law potentials are intimately related to
exponential behavior, the field approximately mimics the background and at late
times it exits to acceleration as potential turns shallow. This is exactly the desired
behavior we are looking for. Such a behavior can also be realized in case of double
exponential and cosh potentials.

Let us understand the tracking behavior through Figs. 1(a) and 1(b). Initially,
the scalar-field energy density is much larger than the background energy density
and the potential is steep. As a result, the field runs down its potential fast, mak-
ing the potential energy irrelevant, and undershoots the background. The Hubble
damping in (5) becomes large as ρb � ρφ and thus the field freezes on the potential
mimicking the cosmological-constant-like behavior in both Figs. 1(a) and 1(b). At
the same time the background energy density redshifts and the field waits till it
becomes comparable to its energy density, and when this happens the field resumes
its motion. Supposing that undershoot is such that the field is still in the steep
region of the potential, in this case it enters the scaling regime and tracks the back-
ground before reaching the shallow region of the field potential. As it reaches this
region, which can be made to happen around the present epoch, its motion slows
down and the field energy density overtakes the background giving rise to late-
time cosmic acceleration [Fig. 1(b)]. Once this behavior is set correctly around the
present epoch by making the appropriate choice of model parameters, the evolution
is insensitive to initial conditions in a wide range of them. In case of nontracker
dark energy models, when the field resumes evolution starting from the freezing
regime, it just takes over the background without following it. These models are
plagued with the same level of fine-tuning problem as ΛCDM itself. The tracker
models might look attractive at the onset. In what follows, we shall try to convince
the reader that the problem is deep and cannot be addressed so simply.

2.2. Scalar field and naturalness

In this subsection we shall briefly demonstrate that models containing a funda-
mental scalar field similar to standard model of particle physics are faced with the
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problem of naturalness. It is expected that in a healthy field theoretic set up, physics
at lower mass scales gets decoupled from higher energy scales à la naturalness. The
criteria of naturalness, formulated by t’Hooft, state that a parameter α in a field
theory is natural if by switching it off in the Lagrangian leads to enhancement of
symmetry, which is respected at the quantum level too.185 In such theories, the
quantum correction should be in the form, δα ∼ αn(n > 0). Theories such as quan-
tum electrodynamics and quantum chromodynamics satisfy the criteria of natural-
ness. Quantum electrodynamics, in particular, is a successful description of atomic
physics via interaction of electrons and photons without any knowledge of higher
mass scales associated with heavier leptons and quarks.

A field theory that includes a fundamental scalar violates this important prop-
erty. In these theories, the quantum correction to the mass of the scalar is pro-
portional to the highest mass scale in the theory thereby lower scales get dragged
towards the highest scale. In this case even if the symmetry is enhanced at classi-
cal level, the same is not respected at quantum level.186–190,a The latter is closely
related to the cosmological constant problem. In presence of a cosmological constant
alone, we obtain the de Sitter space as a solution to Einstein equations. If we switch
it off, the flat space time becomes a solution, which is characterized by the Poincare
symmetry with 10 generators (SO(3, 1) − three rotations, three Lorentz boosts and
4 translations). In case of de Sitter space, the symmetry group is SO(4, 1) which
has 6 rotations and 4 Lorentz boosts. Thus, symmetry is not enhanced in this
case. As for quantum corrections, any massive field placed in vacuum contributes
to vacuum energy whose mass scale is proportional to the highest fundamental
mass scale. Hence, the cosmological constant is not a natural parameter of Einstein
theory.

Let us first consider the cosmological constant problem. Sakharov, in 1968,193

first pointed out that the vacuum expectation value of energy–momentum tensor
of a field placed, by virtue of relativistic covariance, has the following form:

〈0|Tµν |0〉 = −ρvgµν , (18)

where ρv is a generic constant due to conservation of energy-momentum tensor.
Assuming the perfect fluid form for Tµν ,

Tµν = (ρ+ p)uµuν + pgµν ; uµ = (1, 0, 0, 0), (19)

where

ρ = uµuνTµν ; p =
1
3
PµνTµν ; Pµν = gµν + uµuν , (20)

then relativistic covariance [see Eqs. (18) and (19)], demands that ρv = −pv.

aWe thank R. Kaul for many useful discussions on this theme.
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This quantum correction (18) should be added to the right hand side of Einstein
equations (see, Ref. 191 for an alternative point of view)

Rµν − 1
2
Rgµν + gµνΛB = M−2

Pl (Tm
µν + 〈0|Tµν |0〉), (21)

where ΛB is the bare value of the cosmological constant. Note that observations
measure the effective value

Λeff = ΛB +M−2
Pl ρv. (22)

The quantity ρv can be estimated by imagining the field as a collection of harmonic
oscillators and by summing up their zero point energy as192

ρv =
1
2

1
(2π)3

∫
d3kω(k), (23)

pv =
1
6

1
(2π)3

∫
d3k

k2

ω(k)
, (24)

ω(k) =
√
k2 +m2, (25)

where m is the mass of the field and kµ = (k0,k) with k = k. We have dropped the
spin factor which does not change the order of magnitude of vacuum energy. Using
Eqs. (23) and(24) we can write

〈T 〉 = −ρυ + 3pυ = −1
2

1
(2π)3

∫
d3k

m2

ω(k)
. (26)

Next, let us confirm that ρv corresponds to vacuum bubble diagram. The vacuum
bubble is described by the Feynman propagator DF(0)192

DF(0) =
i

(2π)4

∫
d4k

k2 +m2
=

i

(2π)4

∫
d0kd3k
−k2

0 + ω2
. (27)

Using then the identity ∫
d0k

−k2
0 + ω2

= i
π

ω
, (28)

we have

DF(0) = −1
2

1
(2π)3

∫
d3k
ω
. (29)

Comparing Eqs. (26) and (29) we get

〈T 〉 = m2DF(0). (30)

Remembering that pv = −ρv and using Eq. (30), we finally arrive at192

ρv = −m
2

4
DF(0). (31)

Hence computation of vacuum energy is directly related to the vacuum bubble with
massive field circulating in it. We should then sum up the contribution from all the
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massive fields circulating in the bubble. It is clear that the highest mass scale gives
the leading contribution. ρv is formally quadratic divergent and we can estimate
it by using the dimensional regularization. Subtracting out the divergent part we
acquire

ρv � m4

64π2
ln
(
m2

µ2

)
, (32)

with µ an arbitrary scale to be fixed from observations which is however not very
important. The crucial information is contained in the logarithmic pre-factor. If we
believe that there is no physics beyond the standard model of particle physics, we
might identify m with the mass of the top quark to obtain the leading contribution.
It is important to note that even if we turn the cosmological constant to zero at the
classical level, it will be generated by quantum corrections which is generically a
large value. Hence, the cosmological constant is not a natural parameter of Einstein
theory. Finally, we mention here that higher loop diagrams will not add anything
new, they will simply renormalize m.

Before we proceed ahead, let us comment on the Lorentz invariant character
of ρv. Which is obvious from (18) and (31). However, since (23) is an ultraviolet
divergent quantity, ρv might become frame dependent in case the cut off does not
respect Lorentz invariance. It is therefore necessary that one invokes a suitable
scheme such as dimensional regularization, consistent with Lorentz symmetry, for
the computation of vacuum energy.

Let us now turn to field theory where a scalar field couples to a massive fermion:

L = −1
2
gµν∂µφ∂νφ− 1

2
m2φ2 + Ψ̄(iγµ∂µ −mΨ)Ψ + gφΨ̄Ψ, (33)

with mΨ � m. If we now compute the one-loop correction to m, we encounter
quadratic divergence. Using then dimensional regularization and carrying out the
substraction, we find

δm2 ∼ g2

∫
d4k

k2 −m2
Ψ

(k2 +m2
Ψ)2

∼ g2m2
Ψ ln

(
m2

Ψ

µ2

)
. (34)

The quantum correction is proportional to the heaviest mass scale and does not
disappear in the limit m → 0, therefore the mass of the scalar is not protected
under radiative corrections and it gets dragged towards the heaver mass scale of
fermions. This is a similar situation with the one we encountered in the cosmological
constant case. Hence, naturalness is lost in a model that contains a fundamental
scalar.

The situation is quite different in quantum electro dynamics (QED), where the
action reads

LQED = −1
4
FµνF

µν + Ψ̄[iγµ(∂µ − ieAµ) −me]Ψ. (35)

In this case me → 0 enhances the symmetry of the Lagrangian, namely the chiral
symmetry appears. The one-loop correction to the electron mass is logarithmically
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divergent, and using a similar procedure we find

(δme)one loop ∼ e2me ln
(
µ

me

)
, (36)

with a remarkable property that the correction disappears in the limit me → 0. If
we invoke heavier fermions, their contribution is suppressed by inverse powers of
the heavier scales, rendering the theory natural. It is this property that allows for
the decoupling of heavy mass scales from low-mass-scale phenomena in QED, and
thus atomic physics can safely be done without the knowledge of heavy flavors. In
case of the standard model, the Higgs particle mass, the mass of gauge bosons and
fermion masses are all proportional to the vacuum expectation value of the Higgs
field. Turning the vacuum expectation value to zero at classical level, enhances the
symmetry. However, at quantum level, the vacuum expectation value gets generated
by quantum correction, which renders the theory unnatural. This implies that there
is physics beyond the standard model. One way to UV completion is to invoke
supersymmetry which can restore the naturalness of the theory.

In the context of cosmology, since inflation occurs at high energy scales, inflation
can be protected by supersymmetry. Recent observations have ultimately confirmed
the late-time cosmic acceleration, which could be fueled by cosmological constant
or equivalently by a slowly rolling scalar field of mass of the order of H0 ∼ 10−33 eV.
At such low energies, there is no known symmetry that could protect the cosmo-
logical constant or quintessence. Do we require a completion of the theory at this
end? There is no known way of restoring the naturalness of the theory at low ener-
gies. Closing our eyes on this problem, we shall proceed to work with models that
essentially contain a fundamental scalar field, for instance the modified theories of
gravity.

2.3. Conformal transformation and nonminimally coupled

scalar field system

Modified theories of gravity have been investigated recently in the contexts of infla-
tion as well as late-time cosmic acceleration. An important class of modified theories
is described by scalar-tensor theories, which apart from the spin-2 object also con-
tain a scalar degree of freedom. One of such schemes was first proposed by Brans
and Dicke. In general, these theories can be described either in Jordan frame or
in Einstein frame. In the Jordan frame, the particle masses are generic constants
and the matter energy–momentum tensor is conserved on its own, but the scalar
degree of freedom is kinetically mixed with the metric. On the other hand, in Ein-
stein frame the Lagrangian is diagonalized but the scalar field is directly coupled
to matter, thereby the matter energy momentum tensor is not conserved. The field
equation of motion also gets modified such that the total energy–momentum tensor
is still conserved. The two frames are connected to each other by virtue of a con-
formal transformation. One important consequence of nonconservation of matter
energy–momentum tensor manifests in the transformation of particle masses under
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conformal transformation. Since conformal transformation is not a symmetry of the
Lagrangian in general, the question about the equivalence of the two frames nat-
urally arose in the literature. Some authors claimed that the physical frame is the
Jordan one whereas others considered the Einstein frame to be the physical one.
The confusion existed in the literature till very recently before the issue was settled
in Refs. 194 and 195. One can show that not only mathematically, but also phys-
ically both frames are equivalent: Physical quantities do change under conformal
transformation but the relationship between physical observables remains the same
in both frames.

Let us consider the following Brans–Dicke action

SBD =
∫

d4x
√

−g̃ 1
2

[
M2

PlϕR̃− M2
PlωBD(ϕ)
ϕ

(
g̃αβ∂αϕ∂βϕ

)− 2U(ϕ)
]

+
∫

d4x
√

−g̃Lm(ψ, g̃µν), (37)

where ωBD(ϕ) is known as Brans–Dicke parameter. It should be noted that the
field does not couple directly to matter (it does not appear in the matter action).
However, the scalar degree of freedom does mix with the curvature or the spin-2
object in the metric g̃µν , dubbed Jordan metric, and the action (37) is then said to
be in the Jordan frame. The equations of motion for the gravitational sector can
be obtained by varying the action (37) with respect to g̃µν in the Jordan frame,
namely

ϕG̃µν = M−2
Pl T̃µν +

ωBD(ϕ)
ϕ

[
∂µϕ∂νϕ− 1

2
g̃µν(∇̃ϕ)2

]
+ ∇̃µ∇̃νϕ− g̃µν�̃ϕ

−M−2
Pl g̃µνU, (38)

where ∇̃ and �̃ are the covariant derivative and the Laplacian operator respectively
defined using the metric g̃µν . Equation (38) is quite complicated due to the mixing
of scalar field with curvature. The equations of motion for the field look quite
unusual, namely

2ωBD�̃ϕ = −ϕR̃+ (∇̃ϕ)2
(
ωBD

ϕ
− ∂ωBD

∂ϕ

)
+ 2M−2

Pl ϕU
′, (39)

and one can see that the field is sourced by the curvature. For convenience we can
eliminate the Ricci scalar in favor of the trace of the energy–momentum tensor,
which can be obtained by taking the trace of equation (38), resulting to

�̃ϕ =
1

3 + 2ωBD

[
M−2

Pl T̃ − dωBD

dϕ
(∇̃ϕ)2 + 2M−2

Pl (ϕU ′ − 2U)
]
. (40)

Since matter has no direct coupling with the scalar field in the Jordan frame, its
energy–momentum tensor should be conserved. Indeed, using the evolution equa-
tion, it can be demonstrated that

∇̃µT̃
µν = 0. (41)
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However, since the field gets entangled with curvature, its energy–momentum tensor
is not conserved thereby the energy–momentum tensor of matter plus the energy–
momentum tensor of the field is not a conserved quantity in the Jordan frame.

The equations of motion look quite complicated in the Jordan frame as the
scalar degree of freedom is mixed with the curvature. It is therefore desirable to
transform to a frame where the action (37) is diagonalized such that we have Ein-
stein description along with a standard scalar field. Such a frame is known as
Einstein frame. The transition to Einstein frame can be realized by the conformal
transformation172,173,197,198

g̃µν = A2gµν , (42)

where A is known as conformal factor and gµν is the Einstein metric. Conformal
transformation scales the spacetime interval d̃s

2
= A2ds2 and can be thought as

local scale transformation. It is customary to use A2 as we want to ensure that the
pre-factor of gµν should be positive. Let us immediately note that

g̃µν = A−2gµν ;
√
−g̃ = A4√−g. (43)

Since we want to find out the Ricci scalar in Einstein frame, we need to look for
the transformation of Christoffel symbols, namely198

Γ̃µνρ = Γµνρ + (Ωρδµν + Ωνδµρ − Ωµgρν), (44)

where Ω ≡ lnA, and we define Ωµ ≡ ∂µΩ. Hence, we can now transform R to
Einstein frame as

R̃ = A−2(R− 6�Ω − 6gµνΩµΩν). (45)

Note that the second term will not affect the equations of motion and can be
dropped. We can then transform the action to Einstein frame

S =
∫ √−gd4x

[
M2

Pl

2
R− 1

2
(∇φ)2 − V (φ)

]

+
∫ √−gd4xLm(ψ,A(φ)2(φ)gµν), (46)

provided that we make the following identifications:

ϕ = A−2;

( dA
dφ
A

)2

=
1

4ϕ2

(
dϕ
dφ

)2

= M−2
Pl

1
2(2ωBD + 3)

;

V (φ) =
U(ϕ)
M2

Plϕ
2
, (47)

which define the field φ and its potential. Let us note that the action in Einstein
frame (46) is diagonalized giving rise to standard Einstein equations plus a canonical
field which is nonminimally coupled to matter. Hence all the complications of the
Brans–Dicke Lagrangian are imbibed in the conformal coupling.
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The evolution equations which follow from (46) are

Gµν = Tµν + T φµν , (48)

�φ =
α

MPl
T +

dV
dφ

⇒ Veff = V (φ) +
α

MPl
φT ; α ≡MPl

d lnA(φ)
dφ

, (49)

where T ≡ T µµ = 3p−ρ and α is the coupling that for simplicity might be considered
to be a constant. For instance, f(R) theories (ωBD = 0) correspond to α = 1/

√
6.

Furthermore, note that from (48) we deduce that Tµν+T φµν is conserved as expected.
It is also important to mention that the effect of coupling in the effective potential
becomes relevant in the nonrelativistic case as T vanishes in case of relativistic
matter.

It is worth commenting on the relationship between Brans–Dicke parameter and
the coupling constant α. Relations (47) and (49) tell us that α = 1/

√
6 for ωBD = 0

which corresponds to f(R). In general, the coupling constant α is typically of the
order of one, whereas local gravity constrains demand that ωBD � 6000 thereby α
is vanishingly small. In this case we are dealing with the trivial regime of scalar–
tensor theories. It should be emphasized that if accelerated expansion takes place
in this case, it is simply due to the flatness of the potential. In such cases one
does not need the chameleon mechanism and the corresponding scalar theories are
of little interest. We should also note that at the onset it follows from (37) that
Geff = A(φ)G. However, what one measures in Cavendish experiment is different
and can be inferred, for instance, from weak field limit working in the Jordan frame,
namely

Geff = GA(φ)(1 + 2α2). (50)

It is illuminating to quote the relationship in the Einstein frame as

Geff = G(1 + 2α2), (51)

where the second term in the expression within the parenthesis is due to the
exchange of the scalar degree of freedom which is obviously absent in the case
of minimal coupling. Modification of gravity à la scalar-tensor theory (under con-
sideration) is reduced to spin-2 object along with a scalar degree of freedom which
couples to matter with strength of the order of the gravitational coupling. The latter
would be in sharp contradiction with the solar physics where Einstein theory has
phenomenal accuracy. Thus, the scalar degree of freedom needs to be suppressed
or be screened out locally.

As we mentioned above, since the field does not directly couple to matter in
Jordan frame, the energy–momentum tensor in this frame is conserved, namely

∇̃µT̃µν = 0. (52)

In order to check the conservation of the matter energy–momentum tensor in the
Einstein frame, we mention that it transforms while passing from Jordan to Einstein
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frame as

T̃µν = − 2√−g̃
δSm
δg̃µν

= A−2(φ)Tµν . (53)

Acting with the ∇̃ operator on Eq. (53) we obtain

∇̃µTµν − 2
α

MPl
A−2Tµν∂

µφ = 0, (54)

where

∇̃µTµν = A−2gµρ(∂ρTµν − Γ̃σµρTσν − Γ̃σνρTµσ). (55)

Using the expression (44) for the Christofell symbols in Jordan frame and Eq. (54),
we finally arrive at

∇µTµν =
α

MPl
T∂νφ. (56)

Thus, from the conservation of the total energy–momentum tensor Tµν + T φµν , we
deduce the conservation for the scalar field, namely

∇µT φµν = − α

MPl
T∂νφ. (57)

One of the most important implications of conformal transformations is related
to the transformation of particle masses frame, namely the particle masses become
field dependent in the Einstein frame. Indeed,

T̃ µν =
∫

m̃√−g̃
dzµ

d̃s
dzν

d̃s
δ(z − x(s))d̃s = A−6

∫
Am̃√−g

dzµ

ds
dzν

ds
δ(z − x(s)), (58)

which using the transformation of energy–momentum tensor allows us to identify
the particle mass in the Einstein frame as

m = A(φ)m̃. (59)

Let us take the example of FRW cosmology and check for the conformal equiv-
alence194

ds2 = a2(τ)[dτ2 − (dx2 + dy2 + dz2)]; dt = a(t)dτ. (60)

Thus, the FRW metric is conformally mapped to Minkowski metric through

gµν = a2(τ)ηµν ≡ ϕg̃µν . (61)

The Einstein–Hilbert action along with matter part transforms to

S = −3
4
M2

Pl

∫
(∇̃ϕ)2

ϕ
d4x+ Sm(ϕg̃µν , ψ), (62)

which is the action of a free scalar field plus a matter part in Minkowski spacetime.
In this case, the equation of motion for the field is194

3
4
ϕ′2

ϕ
= M−2

Pl ρ̃, (63)

where from now on a prime denotes derivative with respect to the conformal time τ .
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Second, since ϕ explicitly enters in the matter action, its energy–momentum
tensor is not conserved, namely

∇̃µT̃µν =
∂νϕ

2ϕ
T̃ , (64)

which leads to the following equation194:

ρ̃′ =
ϕ′

2ϕ
(ρ̃− 3p̃). (65)

We emphasize that in Minkowski spacetime we are left with an evolving field ϕ

which is coupled to matter, plus the particle masses also evolve with the evolution
of the field. The latter contains the total information of FRW dynamics. Indeed,
one can readily verify that Eqs. (63) and (65) are equivalent to the equations of
standard cosmology. Noting that H(t) = ϕ′/2ϕ3/2, we find that

H2 =
ρ

3M2
Pl

; ρ̇+ 3H(ρ+ p) = 0 (66)

in the Einstein frame, where we changed from conformal to cosmic time and used
the transformation law T̃µν = ϕTµν . Second, one might wonder what could lead
to redshift in the flat spacetime, which is static and the field has no coupling to
radiation. In fact, the evolution of masses mimics the redshift effect in Minkowski
spacetime. Let us consider the frequency radiated during an atomic transition in a
distant galaxy at time t:

ν(t) =
1
2
m̃2α2

F

(
1
n′2 − 1

n2

)
, (67)

where m̃ is the electron mass and αF is the hyperfine structure constant. Its ratio
with the frequency observed by an observer on earth at the present epoch is given
by

ν0
ν(t)

=
m̃0

m̃(t)
=
a0

a
= (1 + z). (68)

We should note that ν0 is the frequency emitted today whereas ν(t) is its counter-
part emitted earlier at cosmic time t when mass of electron was m(t) < m0. Since
we are in Minkowsky space time, ν(t) is observed today with the numerical value
it was emitted at time t. Hence, (68) mimics the redshift effect correctly. One can
further try to understand the thermal history in Minkowski spacetime which is filled
with microwave background radiation with temperature equal to 2.7K. In particu-
lar, to understand in this frame the radiation–matter decoupling, the synthesis of
light elements, and the big bang itself. Similarly to the previous discussion, the key
feature here is attributed to the evolution of masses of elementary particles. The
radiation matter equilibrium corresponds to the epoch when,

|EBE(t)| =
1
2
m̃(t)
m̃0

m̃0α
2
F =

m̃(t)
m̃0

13.6 eV � 10−4 eV → m̃(t) � 10−5m̃0, (69)
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where EBE(t) is the binding energy of hydrogen atom at cosmic time t. Here we used
the condition EBE(t0) < 2.7K� 10−4 eV for equilibrium, while Big Bang obviously
corresponds to the epoch when m̃(t) = 0.

It is also possible to reproduce the local physics in flat spacetime.194 In fact,
one can go ahead and verify the same at the level of perturbations in the case of
FRW spacetime.195 To sum up, in the above discussion we have tried to convince
the reader that the relation between physical observables is the same in all frames
connected to each other by a conformal transformation.

Being convinced by the conformal equivalence, let us consider the case of cou-
pling to standard matter (cold dark matter+baryonic matter). As the universe
enters the matter-dominated era, the nonminimal coupling builds up:

Veff = V (φ) +
α

MPl
ρmφ, (70)

giving rise to minimum of the effective potential such that the minimum itself
evolves with ρm. As mentioned in the Introduction, we are interested in the scaling
behavior in the post inflationary era, which implies that the potential should mimic
the steep exponential potential V (φ) = V0e−λφ/MPl . The dynamical investigation
in this case shows that we have scaling solution, which is accelerated,178 and we
obtain an equation of state of the form

wφ = − α

α+ λ
, (71)

which implies that there is a de Sitter attractor for α� λ. Let us note that matter
now does not evolve with wm = 0 but rather with (71). This is a scaling solution
which is accelerating for large value of coupling (α > λ/2). In case of minimally
coupled scalar field with α = 0, it obviously reduces to standard scaling solution
(see Sec. 3.3 for details).

At the onset it might sound a required arrangement but there is a serious draw-
back. Soon after the universe enters the matter-dominated era, the attractor is
reached destroying the matter era. It is more than desirable that the matter era be
left intact.

There is still a way out, namely to construct a scenario in which the standard
matter does not couple to the field but massive neutrino matter does. Neutrinos
with masses around 1 eV turn nonrelativistic around the present epoch giving rise to
non-zero T , thus inducing a minimum in the effective potential. This arrangement
leaves the matter era unchanged. The required Einstein action has the following
form

S =
∫ √−gd4x

[
M2

Pl

2
R− 1

2
(∂µφ)2 − V (φ)

]

+
∫ √−gd4x[Lm(ψ,A2(φ)gµν) + Lνm(ψ,A2(φ)gµν)], (72)

where Lνm is the action of neutrino matter. We mention that the arrangement in
action(72) implies nonminimal coupling of standard matter in the Jordan frame,
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namely Lm(A−2(φ)gµν), such that the conformal transformation to Einstein frame
leaves standard matter minimally coupled in the Einstein frame. In this case, the
effective potential becomes

Veff = V (φ) +
α

MPl
ρνmφ, (73)

which in case of Type II models can trigger the exit from scaling regime to late-time
acceleration. We shall make use of this mechanism in Sec. 3.2.

2.4. Instant preheating

As mentioned in the Introduction, the models of quintessential infation belong to
the category of nonoscillatory models, and thus the conventional reheating mech-
anism is not applicable to them. One natural and universal mechanism of reheat-
ing is provided by gravitational particle production. After inflation, the geometry
of spacetime undergoes a nonadiabatic change giving rise to particle production,
which could reheat the universe. Unfortunately, this process is extremely inefficient.
The way out is provided by an alternative mechanism dubbed instant preheating
studied in Refs. 49, 50, 169–171. The method relies on the assumption that the
inflaton φ interacts with another scalar field χ, which is coupled to the fermionic
field via Yukawa-type of interaction. Supposing that inflation ends when φ = φend,
we can shift the field φ→ φ′ = φ− φend such that inflation ends at the origin, and
call the new field φ. The Lagrangian is written as

Lint = −1
2
g2φ2χ2 − hψ̄ψχ, (74)

where the couplings are supposed to be positive with g, h < 1 in order for the
perturbation treatment to be valid. The χ field does not possess a bare mass, while
its effective mass depends upon φ as

mχ = gφ. (75)

In the models under consideration, as discussed in the Introduction, inflation
ends in the regime where the field potential is represented by a steep exponential
function, so that the field φ soon enters the kinetic regime after the end of inflation.
In this case, the field would enter into fast-roll running away from the origin. Hence,
production of χ particle after inflation can take place ifmχ changes nonadiabatically
as

ṁχ � m2
χ → φ̇ � gφ2. (76)

Condition (76) implies that

|φ| � |φp| =

(
φ̇end

g

)1/2

. (77)

In order to estimate φ̇, we assume slow roll to hold till the end of inflation. In case
of single-field inflation taking place in four-dimensional spacetime and braneworld
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cosmology, respectively we have

H2 � V

3M2
Pl

; H2 � 1
6M2

Pl

V 2

λb
, (78)

where λb is the brane tension. Using then the slow-roll equation for the field
−3Hφ̇ � V ′, in both cases we find that

|φ̇end| � V
1/2
end ε

1/2
end = V

1/2
end , (79)

where ε = ε0
4λb
V in braneworlds with ε0 � (M2

Pl/2)(V ′/V )2 is the standard slow-
roll parameter. We can now estimate the field where production of χ particles takes
place

φ � φpd �
(
V

1/2
end

g

)1/2

→ g2 � M−4
Pl Vend (φpd � MPl). (80)

Let us make a very crude estimate. Assuming that BICEP2 data are correct, that
is ignoring the dust discussion that is currently taking place in the literature,196 it is
implied that the scale of inflation is Hin ∼ 10−2MPl. As for Hend, it differs from Hin

and it may be less by two orders of magnitudes depending upon the model. Anyway,
assuming Hend ∼ 10−2MPl, we find that g � 0.1, though this range is narrower in
practice thereby production takes place in a small neighborhood around φ = 0. We
can also estimate the production time as

tpd � φ

|φ̇| � g−1/2|φ̇end|−1/2 → tpd � H−1
end, (81)

which is very small implying that particle production commences soon after inflation
ends.

As a next step, we will estimate the χ-particle occupation number. To this effect,
we use the uncertainty relation to obtain the estimation for the wave number, which
allows us to extract the occupation number for χ particles154,170 as

kpd � t−1
pd �

√
g|φ̇end| → nk ∼ e−πk

2/k2
p . (82)

Thus, the number density of χ-particles is

Nχ =
1

(2π)3

∫ ∞

0

nkd3k =
(g|φ̇end|)3/2

(2π)3
, (83)

while the energy density of the created particles reads as

ρχ = Nχmχ =
(g|φ̇end|)3/2

(2π)3
g|φp| =

g2Vend

(2π)3
. (84)

If the particle energy produced at the end of inflation is supposed to be thermalized,
using Eqs. (78) and (84) we find that(

ρφ
ρr

)
end

� (2π)3

g2
. (85)
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This is an important formula which can be used to set a limit on the temperature of
radiation, and therefore to control the duration of the kinetic regime. Then, using
(85) would give the lower limit on the coupling g.

At this point let us mention that the energy of χ particles redshifts as a−3,
and can backreact on the evolution. In order to avoid this problem we should
enforce these particles to decay very fast after their creation. Since φ runs fast after
inflation has ended, the mass of χ grows larger making it to decay into ψ̄ψ, with
the corresponding decay width given by

Γψ̄ψ =
h2mχ

8π
=
h2

8π
g|φ|. (86)

Indeed, the decay rate is larger for larger values of mχ. Hence, the requirement
that the decay of χ into fermions is completed before their backreaction on the
post inflationary dynamics becomes important, imposes a bound on the numerical
value of the coupling h. In particular

Γψ̄ψ � Hend ⇒ h2 � 8π
Hend

g|φ| =
8π√

3
Vend

g|φ|MPl
, (87)

which provides the lower bound on the numerical values of h. In realistic models of
quintessential inflation we find a wide parameter range (g, h) that can give rise to
the required preheating. This mechanism is quite efficient and can easily circum-
vent the aforementioned problem related to excessive production of gravity waves.
Eq. (85) is the main result of this subsection, which shall be used to fix the radi-
ation temperature at the end of inflation in accordance with the nucleosynthesis
constraint.

2.5. Relic gravitational waves

One of the important predictions of the inflationary paradigm is the production
of gravitational waves that are generated quantum-mechanically during inflation.
These gravitational waves induce polarization of the microwave background radia-
tion, such that the size of the effect depends upon their amplitude. The confirmation
of recent B mode polarization measurements could emerge as a strong direct obser-
vational support of inflation.

Gravitation waves in a spatially homogeneous and isotropic spacetime are small
tensor perturbations around the background34,35,37,38,45,46,48,174

ds2 = a2(τ)(dτ2 − a2(δij + hij)dxidxj), (88)

which are transverse and traceless, namely ∂ih
ij = 0;hii = 0, leaving behind two

degrees of freedom. The Einstein equations then imply the Klein–Gordon equation
for tensor perturbations:

�hij = 0 → φ′k + 2
a′

a
+ k2φk; (hij ∼ φk(τ)e−ikxeij), (89)

where eij is the polarization tensor and k = 2πa/λ is the comoving wave num-
ber, while “′” denotes the derivative with respect to conformal time a(τ)dτ = dt.
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Equation (89) can be transformed to a convenient form in terms of a new function,
µk(τ) ≡ a(τ)φk(τ), as

µ′′
k(τ) +

[
k2 − a′′(τ)

a(τ)

]
µk(τ) = 0, (90)

which resembles Schrodinger equation with time-dependent potential U = a′′/a. In
the following we assume inflation to be de Sitter, in which case τ = −[HdSa(τ)]−1.
It is important to distinguish two regimes, namely

kτ � 1 ⇒ k

aH
� 1 modes outside the Hubble radius or Horizon, (91)

kτ � 1 ⇒ k

aH
� 1 modes inside the Hubble radius or Horizon. (92)

Let us first illustrate the underlying idea using a heuristic argument. The case
k2 � U implies that modes are outside the horizon. As U ∼ 1/τ2 the equation of
motion (89) has a simple solution in this regime

φk � C1 + C2

∫
dτ
a2(τ)

, (93)

where the second term becomes smaller and smaller as the universe expands nearly
exponentially during inflation, and therefore the perturbations freeze to a constant
value outside the horizon or on super-horizon scales. On the other hand, deep inside
the horizon or in the sub-Hubble limit, Eq. (89) reduces to the equation of simple
harmonic motion giving rise to oscillating solution µk(τ) ∼ e±ikτ . In this limit
curvature effects are negligible. The choice of positive frequency modes in this limit
defines the vacuum state named Bunch–Device vacuum.

In the standard scenario inflation is followed by radiative regime, whereas in
models of quintessential inflation it is the kinetic regime that commences after
inflation (followed by the radiation era). Let us suppose that the transition occurs
at τ = τ∗. Thus, the solution whose asymptotes we have just described is valid in the
regime −∞ < τ < τ∗. Indeed, the exact solution of (90) in this case, corresponding
to “in” state, is given by

φk(in) =
1

a(τ)

(
1 − i

kτ

)
e−ikτ , −∞ < τ < τ∗, (94)

where we have chosen the positive frequency solution in the sub-Hubble limit. At
the transition point, which happens almost instantaneously at τ = τ∗, the space-
time curvature changes abruptly giving rise to particle production. The solution of
Eq. (90) in the new phase, corresponding to “out” state, also acquires the negative
frequency component

φk(out) =
1

a(τ)
(αke−ikτ + βkeikτ ), τ > τ∗, (95)

where αk and βk are the Bogoliubov coefficients. Solution (95) is valid till the new
cosmic phase transition takes place. The occupation number of particles produced
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in this process is given by

nk = |βk|2. (96)

Let us note that the nonadiabatic character of the process is essential for particle
production. Within a given phase, spacetime curvature is felt less significantly when
changes are adiabatic, such that βk ∼ 0, which is similar to Minkowski spacetime
where vacuum is invariant under Poincare transformations. In the case of phase
transitions, as the vacuum state evolves across the transition point, it no longer
remains empty. We mention that in curved spacetime the vacuum state in general
does not remain empty at later times. However, the occupation number of particles
created within a given phase is negligible.

The Bogoliubov coefficients can be determined by demanding the continuity of
φk and φ′k at the transition point. Following this procedure, one can find out βk
corresponding to transitions: kinetic to radiation, radiation to matter and matter to
dark energy. However, the transition from inflation to post inflationary phase is the
most prominent. In scenarios of quintessential inflation, the kinetic regime essen-
tially follows inflation, and we shall be interested in computing the energy density
of gravitational waves generated across this transition, ignoring the contributions
from other transitions.

In the preceding discussion we have indicated the solution of Eq. (90) for de
Sitter phase. In fact, the exact solution of (90) for a power-law-type post-transition
expansion can be expressed through Hankel function. In general

a =
(
t

t0

)n
=
(
τ

τ0

) 1
2−c

, n =
2

3(1 + w)
, c =

3
2

(
w − 1
3w + 1

)
. (97)

For de Sitter and kinetic regimes, in which we are interested, c = 3/2, a(τ) = τ/τ0
& c = 0, a(τ) = (τ/τ0)1/2 respectively. Before the transition to kinetic regime, the
system is in the adiabatic vacuum or “in” state given by (94). The “out” state
contains both positive and negative frequency modes,

φk(out) = αkφ
+
out(kτ) + βkφ

−
out(kτ), (98)

where positive (negative) frequency modes are given by

φ+,−
out =

(πτ0
4

)1/2

H
(2,1)
(0) (kτ), (99)

with H(2)
(0) = (H(1)

(0) )
∗. In order to find βk we need to incorporate the matching of the

solution across the transition. On super-horizon scales φk(in) freezes to a constant
value, whereas on the other side (inside the horizon, in the kinetic regime) we can
take the small k limit of the Hankel function and then match the “in” and “out”
solutions. The matching gives48

βk � 1
2π

(kτkin)−3
. (100)
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Following Refs. 33, 35 and 48 we can then compute the energy density of gravita-
tional waves produced during the transition from inflation to kinetic regime as

ρg =
1

π2a4

∫
k3|βk|2dk. (101)

Additionally, the spectral energy density is defined as

ρ̃g ≡ d
d log k

ρg =
1

π2a4
(k4|βk|2). (102)

Hence, using Eqs. (100) and (101), we find that the energy density of gravitational
waves produced during the transition under consideration is given by

ρg =
4

3π2
H2

inρb

(
τ

τkin

)
=

32
3π
h2

GWρb

(
τ

τkin

)
, (103)

where hGW is the dimensionless amplitude of gravitational waves and Hin is the
Hubble parameter at the commencement of inflation. ρb stands for the background
energy density, which consists of the inflaton energy density in the kinetic regime
plus the energy density of radiation created by an alternative mechanism. The radi-
ation energy density is negligible as compared to that of the inflaton in the begin-
ning, but eventually it dominates since it redshifts slower (a−4) than the inflaton
energy density (which redshifts as a−6 in the kinetic regime). The duration of kinetic
regime depends upon the temperature of radiation created after inflation. At the
commencement of radiative regime we have

ρg(τ = τeq) =
64
3π
h2

GWρr

(
Tkin

Teq

)2

. (104)

We remind that in the scenarios of quintessential inflation the post inflationary
dynamics is governed by steep potential, such that the kinetic regime is fast reached
after inflation has ended. In order to estimate the order of magnitude, it is a good
approximation to assume that Tkin � Tend, and thus

1 =
(
ρφ
ρr

)
eq

=
(
ρφ
ρr

)
kin

(
akin

aeq

)2

⇒
(
Tkin

Teq

)
�
(
ρφ
ρr

)1/2

end

. (105)

Substituting this expression into Eq. (104) we obtain(
ρg

ρr

)
eq

=
64
3π
h2

GW

(
ρφ
ρr

)
end

. (106)

This is an important result which allows us to impose observational constraint,
namely the nucleosynthesis constraint ((ρg/ρr)eq � 0.01), on the radiation energy
density produced at the end of inflation:(

ρr

ρφ

)
end

� 102 × 64
3π
h2

GW. (107)

Equation (107) provides the lower bound on the radiation temperature at the end
of inflation, thereby it restricts the duration of the kinetic regime. Smaller temper-
ature values would result in longer kinetic regime and enhancement of energy in the
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gravitational waves, that would conflict with the nucleosynthesis constraint. Let us
note that the energy density produced in the process of gravitational particle pro-
duction (ρr = 0.01 × gpH

4
end, gp being the number of degrees of freedom produced

that typically varies between 10 and 100) falls short to meet the above require-
ment. If we invoke the crude estimate h2

GW � H2
end/8π, we deduce that we miss

the nucleosynthesis constraint by several orders of magnitude. In case of instant
preheating, Eq. (107) would place a bound on the numerical value of the coupling
g (g � Hend/MPl), though the actual numbers are model dependent.

3. Quintessential Inflation at Last

In the preceding section we briefly described the concepts needed to unify early and
late time phases of cosmic acceleration using a single scalar field. Although it is usu-
ally easy to integrate late time acceleration and thermal history, the problem often
arises while reconciling the inflationary description with observational constraints.
As mentioned in the Introduction, unification of quintessence and dark energy in
general requires a scalar field with potential which is shallow at early times, followed
by steep exponential-like behavior till late times, where it again turns shallow, as
shown in Fig. 2(a). These generic potentials come into two classes: Type I includes
subclasses of potentials which are steep for most of the universe history and shallow
at late times. Type II subclass can facilitate slow roll at early times, followed by
steep behavior thereafter. We shall first describe quintessential inflation in models
of Type I.

3.1. Quintessential inflation on the brane

In Randall–Sundrum braneworld scenario, our four-dimensional spacetime (brane)
is assumed to be embedded into a five-dimensional AdS bulk, with matter living on
the brane. The effective Einstein equations on the brane, obtained by projecting the

Brane Damping

Late Time Acceleration

Effective 

nature of 

the 

potential

V φ

φ

(a) (b)

Fig. 2. Schematic diagrams of desired potentials in models of quintessential inflation. (a) A
typical potential of subclass Type II. (b) A typical potential of subclass Type I.

1530014-25



2nd Reading

February 27, 2015 13:53 WSPC/S0218-2718 142-IJMPD 1530014

Md. W. Hossain et al.

bulk dynamics on the brane, contain high energy corrections, quadratic in energy–
momentum tensor. As a result, the Friedmann equation on the brane acquires
quadratic dependence in matter density:

H2 =
1

3M2
Pl

ρ

(
1 +

ρ

2λb

)
, (108)

where ρ is the total matter energy density on the brane, which reduces to the field
energy density in case of inflation. Equation (108) implies that the Hubble damping
in the field equation on brane, namely in

φ̈+ 3Hφ̇+ V ′ = 0, (109)

becomes large in the high energy limit ρφ � λb. This feature might facilitate slow
roll of the field along the steep potential on the brane (see Fig. 3 for the effective
nature of the potential during inflation). Indeed, the slow roll parameters in this
case modify to

ε = ε0

1 +
V

λb(
1 +

sV
2λb

)2 ; η =
η0

1 +
V

2λb

, (110)

where ε0 and η0 are the standard slow roll parameters. In the high energy limit
V � λb, where brane corrections are important, the slow roll parameters reduce to

ε � 4ε0
λb

V
; η � 2η0,

λb

V
, (111)

which imply that ε, η � 1 in the high energy limit even if ε0, η0 are not small, i.e.
even if the potential is steep. Hence, high energy brane corrections can indeed give
rise to slow roll along a steep exponential potential of the form

V (φ) = V0e−λφ/MPl . (112)

In this case, λb, Vend, and the potential value at the commencement of inflation
Vin, are related as

Vend = 2λ2λb;
Vend

Vin
= N + 1. (113)

The COBE normalization then allows to determine λb and Vend in terms of the
number of e-foldings as

λb � (8π)4

λ4
× 10−10

(
MPl

N
)4

(114)

Vend � 5
(8π)4

λ4
× 10−10

(
MPl

N
)4

. (115)

In this case, the spectral index nS and tensor-to-scalar ratio r are given by

ns − 1 = − 4
N ; r =

24
N , (116)
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which gives r = 0.4 for N = 60. In this model, inflation gracefully ends as field rolls
down its potential and high energy corrections disappear. After inflation, we have
steep exponential potential for which scaling solution is an attractor. Furthermore,
the slope of the potential is determined by nucleosynthesis constraints,107 namely

Ωφ = 3
(1 + wr)

λ2
� 0.01 → λ � 20, (117)

which ensures that the scalar degree of freedom is adequately suppressed.

3.2. Late time evolution

There are several ways to obtain tracking behavior in models under consideration.
For instance, a double exponential potential under specific conditions gives rise
to the desired behavior. A cosh potential of the form V = V0(cosh λ̃φ/MPl − 1)p

(λ = pλ̃), acquires exponential form for large value of its argument and reduces
to power-law form, V ∼ (φ/MPl)2p, around the origin. Consequently, the average
equation of state parameter, 〈wφ〉 = (p− 1)/(p+ 1), can take a desired value for a
given numerical value of p. Another example is provided by the already mentioned
inverse power-law potentials. In Fig. 3, we depict the evolution from the end of
inflation to late-time cosmic acceleration. Although post-inflationary dynamics is
satisfactory in models of Type I, unfortunately the description of inflationary phase
itself is ruled out by the tensor-to-scalar ratio observations, since it proves to be
too large. An attempt to lower the value of r was made by invoking a Gauss–
Bonnet term in the bulk, however the modified equations of motion lead to moderate
improvement and fails to meet the requirement even of BICEP2. No other way of
resolution of this problem is known at present.

-140

-120

-100

-80

-60

-40

-20

0

0 5 10 15 20 25

Lo
g 1

0 
( 

ρ 
/ M

p4  
)

Log10 ( a / ai )

Fig. 3. Evolution of energy densities, in braneworld cosmology, from the end of inflation to the
present epoch (see Ref. 48).
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3.3. Quintessential inflation in four-dimensional space time

As mentioned above, Type II models can be used to implement the idea of unifica-
tion in the standard FRW background (see Fig. 4(a) for a typical potential of this
subclass). In this case we need to exit from scaling regime to late-time acceleration,
which can be accomplished by invoking a nonminimal coupling of the field to mas-
sive neutrino matter202,203 (see also146,168,199–201,204–214). When massive neutrinos
turn nonrelativistic around the present epoch, their energy density gets directly
coupled to the field, which triggers a minimum in the potential, where the field can
settle giving rise to late-time acceleration (see Fig. 3). This can be realized in the
variable gravity framework.168,215–219

In this scenario all elementary particles are directly coupled to a noncanonical
scalar field in the Jordan frame (see Appendix A), while in the Einstein frame only
massive neutrino matter has a direct coupling to the scalar field, whereas standard
matter does not “see” it. The desired action in Einstein frame has the following
form146,168:

S =
∫

d4x
√−g

[
M2

Pl

2
R− k2(φ)

2
∂µφ∂µφ− V (φ)

]

+Sm + Sr + Sν(C2(φ)gαβ ; Ψν), (118)

with

k2(φ) =
(
α2 − α̃2

α̃2

)
1

1 + β2eαφ/MPl
+ 1, (119)

V (φ) = M4
Ple

−αφ/MPl , (120)

C(φ)2 = ζe2γ̃αφ/MPl . (121)

φ

V φ

Potential

Effective potential

Due to non−
minimal coupling

φ

V φ

(a) (b)

Fig. 4. (a) Schematic representation of a typical Type II potential, shallow at early times and

steep thereafter. (b) The nonminimal coupling to neutrino matter induces a minimum in the (post
inflationary) effective run-away potential of the scalar field.
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In these expressions Sm, Sr and Sν are respectively the matter, radiation and
neutrino actions, α, α̃ and β are constants, and ζ is a constant which does not
appear as a model parameter. In the discussion to follow, it will be clear that α̃
controls slow roll such that α̃ � 1, β is linked to the scale of inflation and α is
related to post-inflationary dynamics.146,147,168

As demonstrated in Refs. 207 and 208, in the presence of a nonminimal coupling
between neutrino matter and the scalar field, the conservation equation for massive
neutrinos has the following form (see Sec. 2.3)

ρ̇ν + 3H(ρν + pν) =
∂ lnmν

∂φ
(ρν − 3pν)φ̇, (122)

and for the model under consideration the continuity equation for massive neutrinos
is given by146,168

ρ̇ν + 3H(ρν + pν) = γ̃α(ρν − 3pν)
φ̇

MPl
. (123)

Comparing Eqs. (122) and (123), we find that

mν = mν,0eγ̃αφ/MPl , (124)

where mν,0 = mν(φ = 0).
Hence, finally we end up with massive neutrino matter with exponentially grow-

ing neutrino masses. This is a phenomenological set up with arrangements such that
mν(z = 0) ∼ 1 eV. In this case, the neutrino matter would be relevant only at late
times, where it might take over the field and build the minimum in its potential. In
the following discussion we shall transform the field to a canonical form, in order
to clearly understand the possibility of slow roll realization at early epochs.

3.3.1. Canonical form

Let us now consider the transformation to canonical field σ through

σ = k(φ), (125)

k2(φ) =
(
∂k

∂φ

)2

, (126)

where k2(φ) is given by (119). Using (126) one can transform the action (118) to a
canonical form as146

SE =
∫

d4x
√−g

[
M2

Pl

2
R− 1

2
∂µσ∂µσ − V (k−1(σ))

]

+Sm + Sr + Sν(C2gαβ ; Ψν). (127)

The canonical field σ can be expressed in terms of the noncanonical field φ146 as
σ(φ)
MPl

=
αφ

α̃MPl
− 1
α̃

ln{2α2 + eαφ/MPlβ2(α2 + α̃2)

+ 2α
√

(1 + eαφ/MPlβ2)(α2 + eαφ/MPlβ2α̃2)}
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+
1
α

ln{α2 + α̃[α̃+ 2eαφ/MPlβ2α̃

+ 2
√

(1 + eαφ/MPlβ2)(α2 + eαφ/MPlβ2α̃2)]} + C,

(128)

where C is an integration constant. Choosing σ(φ = 0) = 0 gives

C =
1
α̃

ln{2α2 + β2(α2 + α̃2) + 2α
√

(1 + β2)(α2 + β2α̃2)}

− 1
α

ln{α2 + α̃[α̃+ 2β2α̃+ 2
√

(1 + β2)(α2 + β2α̃2)]}. (129)

Next we shall consider the case α̃ < 1 and α� α̃, for reasons that will become
clear shortly. In the small field approximation (φ� −2MPl lnβ/α), we find that146

k2(φ) ≈ α2

α̃2
, (130)

which along with (128) allows us to express σ in terms of φ, namely

σ(φ) ≈ α

α̃
φ. (131)

Finally, in the limit under consideration, the potential gets expressed through the
canonical field as

Vs(σ) ≈M4
Ple

−α̃σ/MPl , (132)

with α̃ as the slope of the potential, which clearly shows that the potential (120)
can give rise to slow roll for α̃ < 1 at early times. The numerical values of
the parameter α̃ can be determined by observations as done in the following
discussion.

In the large field approximation (φ� −2MPl lnβ/α), we have146

k2(φ) ≈ 1, (133)

which using (128) leads to the expression for the canonical field:

σ ≈ φ− 2
α̃

ln
(
β

2

)
+

2
α

ln
(

α̃β

α+ α̃

)
. (134)

As a result, in the large field limit, the potential reduces to

Vl(σ) ≈ Vl0e−ασ/MPl , (135)

Vl0 = M4
Pl

(
β

2

)−2α/α̃

+
(

α̃β

α+ α̃

)2

. (136)

Hence, at late times the potential acquires the scaling form as it should be. In what
follows we shall investigate inflation in detail.
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3.3.2. Inflation

For the scenario under consideration the slow-roll parameters can be easily cast in
terms of the noncanonical field φ as146,147,168

ε =
M2

Pl

2

(
1
V

dV
dσ

)2

=
M2

Pl

2k2(φ)

(
1
V

dV
dφ

)2

=
α2

2k2(φ)
, (137)

η =
M2

Pl

V

d2V

dσ2
= 2ε− MPl

α

dε(φ)
dφ

, (138)

ξ2 =
M4

Pl

V 2

dV
dσ

d3V

dσ3
= 2εη − αMPl

k2

dη
dφ
. (139)

For α� 1 and α̃� 1, the slow-roll parameters become

ε =
α̃2

2
(1 +X), η = ε+

α̃2

2
and ξ2 = 2α̃2ε, (140)

where X = β2eαφ/MPl .
We can compute the power spectra of curvature and tensor perturbations using

the following expressions:

PR(k) = As

(
k

k∗

)ns−1+(1/2)dns/d ln k ln(k/k∗)

, (141)

Pt(k) = At

(
k

k∗

)nt

, (142)

where As, At, ns, nt and dns/d ln k denote the scalar amplitude, tensor amplitude,
scalar spectral index, tensor spectral index and its running respectively. The number
of e-foldings in the model is given by146,147,168

N ≈ 1
α̃2

[
ln(1 +X−1) − ln

(
1 +

α̃2

2

)]
, (143)

which for α̃� 1 takes the following form:

N ≈ 1
α̃2

ln(1 +X−1), (144)

which then yields

ε(N ) =
α̃2

2
1

1 − e−α̃2N . (145)

Let us note that small field approximation corresponds to the case α̃2 � 1/N (or
X � 1), which implies ε = η/2 = α̃2/2. On the other hand, in the large field limit
(X � 1), we have ε = η/2 = α̃2X/2, in which case α̃2 � 1/N . The transition
between the two limits takes place for α̃2 ≈ 1/N .

We can then cast the tensor-to-scalar ratio (r), scalar spectral index (ns) and
the running of spectral index (dns/d ln k) through α̃ & N as147

r(N , α̃) ≈ 16ε(N ) =
8α̃2

1 − e−α̃2N , (146)
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ns(N , α̃) ≈ 1 − 6ε+ 2η = 1 − α̃2 coth
(
α̃2N

2

)
, (147)

dns

d ln k
≈ 16εη − 24ε2 − 2ξ2 = − α̃4

2 sinh2

(
α̃2N

2

) . (148)

In Fig. 5, we present the tensor-to-scalar ratio (r) versus α̃, for a given number
of e-foldings N . The shaded region marks the allowed values of r in 1σ confidence
level in accordance with the findings of BICEP261 collaboration, i.e. r = 0.2+0.07

−0.05.
Thus, from this figure we deduce that the values of r allowed by the BICEP2 can
be obtained by tuning the parameter α̃, for example r ≈ 0.2 if α̃ = 0.12 and
N = 60. Using expressions (147) and (148) we can then find the corresponding
values, namely ns = 0.965 and dns/d ln k = −0.000522.

Figure 6 shows the 1σ (blue) and 2σ (cyan) likelihood contours on the ns − r

plane for the observations Planck +WP + highL+BICEP2,61 as well as the 1σ
(red) and 2σ (pink) contours from the observations Planck+WP + highL.220 On
top, we display the predictions of the model under consideration. For example, the
black solid curves bound the region predicted in our model for e-foldings between
N = 50 and N = 70 and for the parameter α̃ ranging from 0+ to 0.175. Figure 6
clearly shows that we can obtain a tensor-to-scalar ratio well within the 1σ (blue)
confidence level by choosing the suitable values of the parameter α̃. Moreover, using
r = −8nt, we also find the range of nt as −0.0338 ≤ nt ≤ −0.0188 for the given
BICEP261 range of r in 1σ confidence level.

As for the COBE normalized value of density perturbations, we use the following
fitting function29:

As = 1.91 × 10−5e1.01(1−ns)

√
1 + 0.75r

. (149)

0.00 0.05 0.10 0.15

0.15

0.20

0.25

0.30

α

r

50

60

70

Fig. 5. (Color online) Tensor-to-scalar ratio (r) versus α̃, for different e-foldings N . Blue (dashed),
red (solid) and black (dotted) lines correspond to N = 50, 60 and 70, respectively. The shaded

region represents the BICEP2 constraint on r at 1σ confidence level, that is r = 0.2+0.07
−0.05 (see

Ref. 61).
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Fig. 6. 1σ (red) and 2σ (pink) contours for P lanck + WP + highL data, and 1σ (blue) and 2σ
(cyan) contours for P lanck + WP + highL + BICEP2 data, on the ns − r plane. The black solid
curves mark the region predicted in our model for the parameter α̃ between 0+ and 0.175, and
for e-foldings between N = 50 and N = 70. The upper line (α̃ = 0.17) is for N from 50 to 70, the
right curve (N = 70) is for α̃ from 0+ to 0.17, the lower line (α̃ → 0) is for N from 50 to 70, and
the left curve (N = 50) is for α̃ from 0+ to 0.17 (see Ref. 147).

According to BICEP2,61 r = 0.2+0.07
−0.05 whereas Planck 2013 results220 indicated

that ns = 0.9603 ± 0.0073. Hence, the COBE normalized value of density pertur-
bations for the best fit values of r and ns taken from the BICEP261 and Planck220

observations is given by 1.8539× 10−5.
The scalar perturbation spectrum

A2
s (k) =

V

(150π2M4
Plε)

, (150)

at the horizon crossing (k = k∗ = a∗H∗) is

A2
s (k∗) = 7ns∗−1δ2H . (151)

We mention that the energy scale of inflation is directly related to r (with a weak
dependence on nS). It can be represented by the following expression:

V
1/4
∗ =

(
7ns∗−1r∗

1 − 0.07r∗ − 0.512ns∗

)1/4

2.75 × 1016 GeV. (152)

Using expression (152), for r = 0.2 and ns = 0.9603, we find the energy scale of
inflation to be 2.157× 1016 GeV. Additionally, COBE normalization also allows us
to obtain a relation between the parameters α̃, β and e-foldings N , namely147

β2 sinh2
(
α̃2N

2

)
α̃2

= 6.36 × 10−8. (153)

As mentioned above, the nucleosynthesis constraint (Planck results107), puts a
bound α � 20 which with α̃ � 1 tells us that inflation ends in the region of large
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values of X . Indeed, in the large-field slow-roll regime, ε = η = α̃2X/2 ⇒ Xend =
2/α̃2 � 1, which leads to k2(φ) � α2/(α̃2X) ⇒ kend � α/

√
2.

Let us comment on the small and large field limit. Remembering that the two
regions are separated by the boundary α̃ =

√
1/N , we conclude that if inflation

begins in the large field region, α̃ needs to be small in order to get the required
number of e-foldings. In case inflation commences around the boundary, the range
of slow roll is larger and we might improve upon the numerical values of α̃ for the
given number of e-foldings. And this should give rise to larger values of r.

We then turn to the computation of the quantities of interest at the commence-
ment of inflation:

Xin =
1

(eα̃2N − 1)
, (154)

which yields the corresponding potential value

Vin = M4
Plβ

2(eα̃
2N − 1). (155)

Eliminating β in favor of α̃ and N in Eq. (153) we have

Vin =
2.5 × 10−7α̃2M4

Pl

(1 − e−α̃2N )
. (156)

V
1/4
in provides the scale of inflation and should agree with (152).

It is important to relate the quantities of interest at the end and at the beginning
of inflation. We find

Xin

Xend
=
Vend

Vin
=

α̃2

2(eα̃2N − 1)
, (157)

which in the region of large field reduces to
Xin

Xend
=
Vend

Vin
=

1
2N . (158)

Since during inflation 3H2M2
Pl ≈ V , we also get the ratio Hend/Hin using (157),

which gives the estimation for Hend as

Hend =
MPlβα̃√

6
=

1.02 × 10−4α̃2MPl

sinh
(
α̃2N

2

) . (159)

The above quoted estimates are important for the computation of radiation energy
density and its ratio to the field energy density at the end of inflation.

3.3.3. Relic gravitational wave spectrum

As shown in Sec. 2.5, the spectral energy density of relic gravitational waves ρ̃g(k)
generated during the transition from de Sitter to post-inflationary phase, crucially
depends upon the post-inflationary equation-of-state parameter w48:

ρ̃g(k) ∝ k1−2|c|, (160)

where c is defined in Sec. 2.5.

1530014-34



2nd Reading

February 27, 2015 13:53 WSPC/S0218-2718 142-IJMPD 1530014

Unification of inflation and dark energy

In the present scenario, inflation essentially follows by the kinetic regime with
w = wφ = 1, which implies a blue spectrum of gravitational wave background
ρg ∝ k. Since nt = −r/8 is small, we ignored it when we assumed inflation to
be exactly exponential. Therefore, the blue spectrum in our case is related to the
kinetic regime that follows quintessential inflation.

As demonstrated in Sec. 2.5 and in Refs. 37, 38, 45 and 48, the gravitational
wave amplitude enhances during the kinetic regime, which might lead to violation
of the nucleosynthesis constraint at the commencement of the radiative regime,
depending upon the length of the kinetic regime. Using the condition (106) with

h2
GW =

H2
in

8πM2
Pl

=
3.315× 10−9α̃2

1 − e−α̃2N , (161)

and the nucleosynthesis constraint (107), allows us to estimate the radiation energy
density at the end of inflation as

ρr,end ≥ 3.517 × 10−14M4
Plα̃

6eα̃
2N/2

sinh3

(
α̃2N

2

) . (162)

We can also estimate Tend = ρ
1/4
r,end using (162). Now the bound on r from BICEP261

gives the bound on α̃ as 0.063 ≤ α̃ ≤ 1.83 for N = 60. For α̃ = 0.12 and N = 60,
r ≈ 0.2 and we get the bound on the temperature at the end of inflation as Tend ≥
6.65× 1013 GeV. This condition cannot be fulfilled if reheating takes place through
gravitational particle production. As shown in Sec. 2.4, instant preheating169–171

can be implemented48,146 in this case. Applying the constraint (162) on (85), we
can derive limits on the parameter space of the coupling g � 6α × 10−5 and h �
2
√
g × 10−6.146

Keeping in mind observations such as LIGO and LISA, it is convenient to define
the dimensionless spectral energy density parameter

ΩGW(k) =
ρ̃g(k)
ρc

, (163)

where ρc is the critical energy density and (for detailed calculations, we refer the
reader to Ref. 48)

Ω(MD)
GW =

3
8π3

h2
GWΩm0

(
λ

λh

)2

, λMD < λ ≤ λh, (164)

Ω(RD)
GW (λ) =

1
6π
h2

GWΩr0, λRD < λ ≤ λMD, (165)

Ω(kin)
GW (λ) = Ω(RD)

GW

(
λRD

λ

)
, λkin < λ ≤ λRD, (166)

with

λh = 2cH−1
0 , (167)
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λMD =
2π
3
λh

(
Ωr0

Ωm0

)1/2

, (168)

λRD = 4λh

(
Ωm0

Ωr0

)1/2
TMD

Trh
, (169)

λkin = cH−1
kin

(
Trh

T0

)(
Hkin

Hrh

)1/3

, (170)

where “MD,” “RD” and “kin” denote the matter, radiation and kinetic energy
dominated regimes respectively; H0, Ωm0 and Ωr0 designate Hubble parameter,
matter and radiation energy density parameters at the present epoch. Finally, Trh

and Hrh are respectively the reheating temperature and Hubble parameter at the
time of reheating, which takes place very close to the end of inflation as we saw in
Sec. 2.4.

In Fig. 7, we present the spectrum of the spectral energy density of relic gravita-
tional waves with wavelength λ, while sensitivity curves of advanced LIGO221 and
LISA222 are also depicted. Furthermore, in Fig. 8 we depict the spectrum of relic
gravitational waves for different numerical values of the tensor-to-scalar ratio r.
Next, expressing hGW in terms of the tensor-to-scalar ratio using (146) and (161),
gives h2

GW = 3.315 × 10−9r/8. Hence, the square of the amplitude of gravitational
waves is directly proportional to r. Since the spectral energy density parameter
ΩGW is proportional to the square of the amplitude, ΩGW also increases with r, as
can also observe in Fig. 8.
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Log 10 λ

L
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10
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W AdvLIGO

LISA

Fig. 7. (Color online) The spectral energy density of the relic gravitational wave background as
a function of the wavelength λ. Blue (small dashed), red (long dashed) and cyan (dotted) lines
correspond respectively to reheating temperatures 7×1013 GeV, 2.5×1014 GeV and 8×1014 GeV.
We have considered α̃ = 0.12 and N = 60. Black solid lines represent the sensitivity curves of
advanced LIGO and LISA.
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Fig. 8. (Color online) The spectral energy density of the relic gravitational wave background
as a function of the wavelength λ. Blue (small dashed), red (long dashed) and cyan (solid) lines
respectively correspond to tensor-to-scalar ratio r = 0.1, 0.2 and 0.3, with reheating temperature
1014 GeV. We have considered α̃ = 0.12 and N = 60.

3.3.4. Evading Lyth bound

In the preceding discussion we have shown that the scale of inflation depends upon
the tensor-to-scalar ratio of perturbations r. It turns out that the range of inflation
also crucially depends upon this ratio, giving rise to super Planckian excursion of
the field for large values of r, irrespectively of the underlying model of inflation.

Indeed, in case of single canonical scalar field ϕ model, the number of e-folds is
given by

N =
1
M2

Pl

∫ ϕin

ϕend

V (ϕ)
V ′(ϕ)

dϕ ≡ 1
MPl

∫ ϕin

ϕend

dϕ√
2ε0

, (171)

where ε0 is the standard slow-roll parameter. This expression leads to the following
inequality:

N � |ϕin − ϕend|
MPl

√
2ε0min

. (172)

For simplicity, we assume that slow-roll parameters have monotonous behavior. In
that case, ε0min ≈ ε0in, where ε0in denotes the value of ε0 at the commencement
of inflation. Using then the consistency relation r� = 16ε0in, with r� the tensor-to-
scalar ration at the commencement of inflation, and relation (172), gives the bound
on the range of inflation known as Lyth bound:

δϕ ≡ |ϕin − ϕend| � NMPl

(r�
8

)1/2

, (173)
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which implies that δϕ � 5MPl
65 if r� � 0.1 and N = 50. This super-Planckian field

excursion throws a challenge to the framework of effective field theory.
It is important to look for a field theoretic framework which would allow to

evade the Lyth bound. Let us show that the bound gets modified in the case of a
noncanonical scalar field with the Lagrangian −1/2k2(φ)∂µφ∂µφ + V , where k(φ)
is a kinetic function. In this case, the number of e-folds (N ) is given by

N =
1
M2

Pl

∫ σin

σend

V (σ)
dV (σ)

dσ

dσ =
1
M2

Pl

∫ φin

φend

k2(φ)
V (φ)
V ′(φ)

dφ, (174)

which using (137) gives us the bound66

N � δφ

M2
Pl

∣∣∣∣k2(φ)
V (φ)
V ′(φ)

∣∣∣∣
max

=
δφ

MPl

kmax√
2εmin

. (175)

Assuming again r� = 16εin and using expression (175), we find the following
relation for the range of inflation:

δφ �
(
NMPl

√
r�
8

)
1

kmax
=
(
NMPl

√
r�
8

)
α̃

α
, (176)

where we have used the fact that kmax = α/α̃. The extra multiplicative factor
α̃/α� 1 in (176) allows for a large range in sub-Planckian region.

We will now check explicitly that the sub-Planckian range is consistent with
observations. Let us consider the following ratio66,147

Vend

Vin
=

α̃2

2(eα̃2N − 1)
=
r�
16

e−α̃
2N , (177)

which gives66

α

MPl
|φin − φend| =

αδφ

MPl
=

∣∣∣∣∣ln
[

α̃2

2
(
eα̃2N − 1

)
]∣∣∣∣∣ =

∣∣∣ln( r�
16

)
− α̃2N

∣∣∣. (178)

Using (146) we find that r� ≈ 0.15 for α̃ = 0.06 and N = 60. Considering these
values and using Eq. (178), we arrive at the estimate δφ/MPl ≈ 5/α. For α = 20,
δφ = 0.25MPl which is the maximum value of δφ. The latter is consistent with the
bound (176). Indeed, using relation (176) and taking N = 60, r� = 0.15, α = 20
and α̃ = 0.06, we obtain the bound δφ ≥ 0.0246MPl. Moreover, one can check that
our conclusion holds for the entire observed range of α̃. Hence, we conclude that
the model under consideration can evade the super-Planckian Lyth bound. It is
interesting to note that the requirement of viable post-inflationary evolution helps
in keeping the range of inflation sub-Planckian.

3.3.5. Late time dynamics

As we have already mentioned, the late-time exit from the scaling regime in the
model at hand, is caused by the nonminimal coupling of the field to massive neutrino
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matter. Indeed, varying the action (127) with respect to the metric gµν , we obtain
the two Friedmann equations:

3H2M2
Pl =

1
2
σ̇2 + V (σ) + ρm + ρr + ρν , (179)

(2Ḣ + 3H2)M2
Pl = −1

2
σ̇2 + V (σ) − 1

3
ρr − pν , (180)

where the neutrino pressure pν behaves as radiation during the early times but
mimics nonrelativistic matter at late times. Varying the action (127) with respect
to the field σ leads to its equation of motionb:

σ̈ + 3Hσ̇ = −dV (σ)
dσ

− ∂ lnmν

∂σ
(ρν − 3pν), (181)

with146

∂ lnmν

∂σ
=

γ̃α

MPlk(φ)
. (182)

Clearly, during the radiative regime the last term in the r.h.s. of Eq. (181) does
not contribute, since during that era neutrinos behave like radiation and its
energy–momentum tensor is traceless. However, at late times neutrinos behave as
nonrelativistic matter, and the nonminimal coupling between the scalar field and
neutrinos builds up and crucially transforms the late-time dynamics. We shall use
the following ansatz for wν(z) to mimic the said transition146:

wν(z) =
pν
ρν

=
1
6

{
1 + tanh

[
ln(1 + z) − zeq

zdur

]}
. (183)

In the above expression zeq and zdur determine the time and duration of the
transition. Since massive neutrinos should be nonrelativistic in the recent cosmo-
logical past, we deduce that we need a large value of zdur such that the transition
is smooth. Following Refs. 199, 200 and 212, we set zNR ∈ (2 − 10) for mν ∈
(0.015 − 2.3) eV.

Let us define the dark energy density parameter as

ΩDE = Ωσ + Ων , (184)

where Ω’s are the separate density parameters (for definitions see Appendix B).
The equation-of-state parameters of the total matter content of the universe, of the
scalar-field sector, and of the dark-energy sector, can be written as

weff = −1 − 2
3
Ḣ

H2
, (185)

bVariation of Sν with respect to σ leads to

1√−g

δSν

δσ
=

1√−g

δSν

δφ

∂φ

∂σ
=

C,φ

C
T (ν)

k(φ)
=

γ̃α

MPl

T (ν)

k(φ)
.
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wσ =
pσ
ρσ
, (186)

wDE =
weff − 1

3
Ωr

ΩDE
, (187)

where

pσ =
1
2
σ̇2 − V (σ). (188)

In order to perform a detailed phase space analysis one needs to form an
autonomous system, as we show in Appendix B (see also Ref. 146). Here we just
mention the only relevant stable fixed point for which

Ωm = 0, (189)

Ωr = 0, (190)

Ων =
−3 + α2(1 + γ̃)
α2(1 + γ̃)2

, (191)

Ωσ =
γ̃

1 + γ̃
+

3
α2(1 + γ̃)2

, (192)

and the equation-of-state parameters are given by

weff = − γ̃

1 + γ̃
, (193)

wσ = − α2γ̃(1 + γ̃)
3 + α2γ̃(1 + γ̃)

, (194)

wν = 0. (195)

This fixed point is a scaling solution in presence of the coupling, which is accel-
erating for large γ̃ [see Eqs. (193) and (194)]. In the case where the coupling is
absent (γ̃ = 0) one still has a scaling solution, but the corresponding solution is not
accelerating.

In Fig. 9(a) and Sec. 3.3.5 we present the post-inflationary evolution of the
energy densities of matter (ρm), radiation (ρr), neutrinos (ρν) and scalar field (ρσ).
As we observe, we have a viable evolution after the inflationary stage.

In Fig. 10(a), we present the universe evolution from the kinetic regime, followed
by the radiation, matter and dark energy dominated eras. The sequences are also
clear from Fig. 10(b). In Fig. 10(a), we observe that Ων starts growing at the recent
past, which is a novel feature introduced by the nonminimal coupling.

Once again let us emphasize the important role played by massive neutrino
matter in our scenario. This late-time interaction of neutrino matter with the scalar
field modifies its potential, which in terms of the noncanonical field is given by

Veff(φ) = V (φ) + ρ̂νeγ̃αφ/MPl . (196)
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Fig. 9. (Color online) Evolution of various energy densities. ρm (green dot-dashed), ρr (blue
dashed), ρσ (red solid (upper panel)) and ρν (Purple solid (lower panel)) respectively correspond
to matter, radiation, scalar field σ and neutrinos. ρc0 is the present critical energy density of
the universe. Figure 9(a) exhibits a tracker behavior of the scalar field, which tracks matter and
radiation up to the recent past and then takes over matter and becomes the dominant component
of the universe. Section 3.3.5 shows that at late times, when neutrinos become nonrelativistic, ρν

takes over radiation and slowly grows thereafter. At the present epoch ρν is still sub-dominant
but would take over matter in the future. We have considered α = 10, γ̃ = 30 and zdur = 10.
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Fig. 10. (Color online) (a) The evolution of the density parameters of matter (green dot-dashed),
radiation (blue long dashed), scalar field σ (red dotted), and neutrinos (black solid). (b) The
evolution of the corresponding equation-of-state parameters. We have considered the parameter
values α = 10, γ̃ = 30 and zdur = 3.6.

This effective potential has a minimum at

φmin =
MPl

α(1 + γ̃)
ln
(
M4

Pl

γ̃ρ̂ν

)
, (197)

which is the key feature in the scenario under consideration. By setting the model
parameters appropriately, it is possible to achieve slow roll of the field around the
minimum of the effective potential. Using (197) we obtain the minimum value of
the effective potential (196) for φ = φmin as

Veff,min = (1 + γ̃) ρν(φmin), (198)

where ρν(φmin) = ρ̂νeγ̃αφmin/MPl .
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Broadly, since the field has to settle in the minimum of the effective poten-
tial during the present epoch, Veff,min ∼ H2

0M
2
Pl. Hence, Eq. (198) implies that

ρν(φmin) ∼ H2
0M

2
Pl. It is therefore clear that in the model under consideration the

dark energy scale is directly related to the massive neutrino mass scale of recent
epoch. We therefore conclude that the scenario at hand leads to successful descrip-
tion of the universe, from inflation to dark energy, in the framework of a single scalar
field. However, the stability of the neutrino matter perturbations in the scenario
remains to be checked.

4. Summary and Outlook

This review is a pedagogical presentation of the paradigm of quintessential infla-
tion. In Sec. 2, we described the essential concepts required to execute the task of
unification of inflation and dark energy. We tried to make clear to the reader that
one needs specific features of scalar field dynamics, that would leave intact the bulk
of the thermal history of the universe, complementing it at early and late times in
a consistent manner. The latter inevitable asks for scaling behavior (after inflation)
and exit from it at late times — a tracker solution. We have briefly described the
realization of the desired features of scalar field dynamics.

Historically, this framework was proposed with the hope to alleviate the fine-
tuning problem associated with the cosmological constant. It turns out that a field
theoretic set up which includes a fundamental scalar field is plagued with deep
issues of theoretical nature à la naturalness. In a healthy field theory one expects
the decoupling of low energy scales from high energy phenomena. For instance,
electrodynamics and QCD possess this remarkable property, whereas the standard
model of particle physics with the Higgs scalar fails to meet the requirement of
naturalness. We have described this important aspect to emphasize that the cos-
mological constant problem manifests as a problem of naturalness for quintessence
field with mass of the order of the present Hubble parameter H0. In case of a funda-
mental scalar, naturalness in the high energy regime could be restored by invoking
supersymmetry, whereas there is no known way to accomplish the same at low
energy.

Since nonminimal coupling plays important role for unification of inflation and
dark energy, we have included a subsection on conformal transformation. Leaving
technical details to Refs. 172 and 198, we have illustrated the physical equivalence
of frames connected with a conformal transformation. Moreover, we included the
necessary material needed by dark-energy model building with nonminimal cou-
pling. In models of Type II the post inflationary dynamics is described by steep
run-away type potentials. In this case the presence of nonminimal coupling in the
Einstein frame triggers a minimum in the potential, whose depth depends upon
the coupling α and the slope of the potential λ. By properly adjusting them, it is
possible to obtain slow roll around the minimum of the potential. The minimum
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might occur around the present epoch if we invoke nonminimal coupling with mas-
sive neutrino matter. Obviously, this is a phenomenological setting that we have
discussed in the review in detail. The latter provides us with a mechanism of exit
from the scaling regime, which is valuable for dark energy model building in its own
right, irrespectively of quintessential inflation.

Models of quintessential inflation require an alternative reheating mechanism,
and instant preheating is specially suitable to this class of scenarios. We have tried
to present the estimates of particle production in a model-independent way. Equa-
tion (85) is the main result of Sec. 2.4, which is used in Sec. 3 to set the radiation
temperature at the end of inflation. We mention here once again that these results
can be applied to any other model where the field is nonoscillatory after inflation.
The requirement of an efficient reheating mechanism is dictated by the problem
posed by relic gravitation waves.

In Sec. 2.5, we also reviewed the basics of quantum generation of grav-
itational waves during inflation. Their amplitude enhances during the kinetic
regime which essentially follows inflation. Inefficient reheating mechanism results
into longer kinetic regime, that leads to violation of the nucleosynthesis con-
straint at the commencement of the radiative regime. While deriving Eq. (107),
the main result of this subsection, we omitted many details. This equation,
along with (85), fixes the reheating temperature consistently with nucleosynthesis
requirements.

In Sec. 3, we first described braneworld quintessential inflation. Unfortunately,
this model is ruled out by observations, as the tensor-to-scalar ratio of perturba-
tions in this case is too large, though post-inflationary evolution is satisfactory.
To the best of our knowledge, no other mechanism is known at present to imple-
ment inflation in models of Type I. We finally discussed Type II models, with a
noncanonical kinetic term in the Lagrangian of the scalar field φ. The Lagrangian
has three parameters, namely α̃, α and β. In terms of a canonical field σ(φ) for
φ close to the origin, V ∼ e−α̃σ/MPl which obviously facilitates slow roll for small
α̃. Inflation in this model ends for large φ such that the field potential has scal-
ing form thereafter, namely V ∼ e−α/MPl where α is fixed using nucleosynthesis
constraints (α � 20). The third parameter β is fixed by COBE normalization.
Small (large) field approximation in this case corresponds to α̃� 1/N (α̃� 1/N ).
Since r is a monotonously increasing function of α̃, we can reconcile with observa-
tions (Planck/BICEP2) depending upon the region where inflation commences. It
is interesting to note that the Lyth bound can be evaded in this case provided that
α � 24.

Last but not least, we discussed issues related to relic gravitational waves. The
blue spectrum of these waves is generated during the transition from inflation to
kinetic regime. This is a generic feature of the scenario at hand, which can be used
to falsify the paradigm of quintessential inflation. We hope that future LISA and
Adv LIGO would help to settle this issue.
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Appendix A. Variable Gravity in Jordan Frame

Let us consider the following action with a noncanonical scalar field χ146,168

SJ =
∫

d4x
√

−g̃
[
1
2
F̃ (χ)R̃− 1

2
K̃(χ)∂µχ∂µχ− Ṽ (χ)

]

+ S̃m + S̃r + S̃ν , (A.1)

with

F̃ (χ) = χ2,

K̃(χ) =
4
α̃2

m2

χ2 +m2
+

4
α2

χ2

χ2 +m2
− 6,

Ṽ (χ) = µ2χ2,

and

S̃m = S̃m
(
χ2

M2
Pl

g̃αβ; Ψm

)
,

S̃r = S̃r
(
χ2

M2
Pl

g̃αβ ; Ψr

)
,

S̃ν = S̃ν
((

χ

MPl

)4γ̃+2

g̃αβ ; Ψν

)
,

where tildes denote the quantities in the Jordan frame. As discussed earlier, it
proves convenient to work in the Einstein frame. In order to transfer the action
(A.1) to Einstein frame, let us consider the following conformal transformation:

gµν = A−2g̃µν , (A.2)

where A−2 = F̃ (χ)/M2
Pl is the conformal factor and gµν is the Einstein-frame metric.

Under conformal transformation (A.2) and Eq. (45), the Ricci scalar transforms
as

R̃ =
F̃

M2
Pl

{
R+ 3� ln

(
F̃

M2
Pl

)
− 3

2F̃ 2
gµν × ∂µF̃ ∂νF̃

}
, (A.3)
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and the Jordan-frame action (A.1) becomes

SE =
∫

d4x
√−g

[
M2

Pl

(
1
2
R− 1

2χ2
K(χ)∂µχ∂µχ

)
− V (χ)

]

+Sm + Sr + Sν
((

χ

MPl

)4γ̃

gαβ ; Ψν

)
, (A.4)

where

V (χ) =
M4

PlṼ

F̃ 2
, (A.5)

K(χ) = χ2


K̃
F̃

+
3
2

(
∂ ln F̃
∂χ

)2

. (A.6)

Finally, for convenience let us define a new noncanonical scalar field φ through

χ = µe
αφ

2MPl . (A.7)

In this case the action (A.4) takes the form of Eq. (118), with

ζ =
(

µ

MPl

)4γ̃

. (A.8)

Appendix B. Autonomous System for Variable Gravity
Framework

The dimensionless density parameters for matter, radiation, neutrinos and scalar
field, are respectively defined as

Ωm =
ρm

3H2M2
Pl

, (B.1)

Ωr =
ρr

3H2M2
Pl

, (B.2)

Ων =
ρν

3H2M2
Pl

, (B.3)

Ωσ =
ρσ

3H2M2
Pl

, (B.4)

where

ρσ =
1
2
σ̇2 + V (σ). (B.5)

In order to examine the cosmological dynamics let us define the following dimen-
sionless variables:

x =
σ̇√

6HMPl

, (B.6)

y =
√
V√

3HMPl

, (B.7)
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λ = − MPl

V (σ)
dV (σ)
dσ

= −MPl

k(φ)
1

V (φ)
∂V (φ)
∂φ

=
α

k(φ)
. (B.8)

In order to simplify our analysis, we shall use approximations valid at late times.
Since in this section we are dealing with late-time cosmology, we can use the late-
time approximation of k(φ). Expanding (119) and keeping up to first order in
e−αφ/MPl , we find that

k2(φ) ≈ 1 +
α2 − α̃2

α̃2µ2
m

e−αφ/MPl , (B.9)

which indeed satisfies the discussed requirements that after the inflation end k2(φ)
must go rapidly towards 1 for α > α̃ and α̃ � 1. Therefore, the variable λ from
(B.8) becomes

λ = α

[
1 +

α2 − α̃2

α̃2µ2
m

e−αφ/MPl

]−1/2

. (B.10)

In summary, using the six dimensionless variables x, y, λ, Ωm, Ωr and wν , we
can transform the cosmological system of equations (179)–(183) into its autonomous
form146:

dx
dN

=
x

2
(3wνΩν + Ωr − 3y2 − 3) +

3x3

2
+

√
3
2
y2λ

+

√
3
2
(3wν − 1)γ̃λΩν , (B.11)

dy
dN

=
y

2
(3x2 −

√
6xλ+ 3 + 3wνΩν + Ωr) − 3y3

2
, (B.12)

dΩr
dN

= −Ωr(1 − 3x2 + 3y2 − 3wνΩν − Ωr), (B.13)

dΩm
dN

= Ωm(3x2 − 3y2 + 3wνΩν + Ωr), (B.14)

dwν
dN

=
2wν
zdur

(3wν − 1), (B.15)

dλ
dN

=

√
3
2
xλ2

(
1 − λ2

α2

)
, (B.16)

where N = ln a.
The equation-of-state parameters defined in (185)–(187) can be written as

weff = x2 − y2 + wνΩν +
Ωr
3
, (B.17)

wσ =
x2 − y2

x2 + y2
, (B.18)

wDE =
weff − 1

3
Ωr

ΩDE
=
x2 − y2 + wνΩν
1 − Ωm − Ωr

. (B.19)
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